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I. INTRODUCTION AND REVIEW OF LITERATURE

Consider a system which may be defined a§ a stochastic process whose
realization is a series of transitions between a finite number of stateé.
If the probability of transition to another state depends only on the
current state of the system and not on the series of transitions leading
to the current state, the process may be called & Markov chain. Suppose
that a reward is generated immediately after each transition and that the
value of the reward depends on the gtate of the system prior to and
immediately after the transition. For a given number of transitioms, the
expected value of the sum of future rewards will be called the value of
the system, Also suppose that one or more alternatives are associated
with each state, Prior to the next transition one of the alternatives
must be selected; the alternative selected will determine the probability
of transition to other states and the value of the reward received due to
the transition, The duty of a decision maker is to choose alternatives
in a manner which will maximize the value of the system. Bellman (2)
has called this model a Markovian decision process.

A Markovian decision process can be classified into discounted and

non=-discounted models, Call B8, 0 < 8 < 1, the discount factor and

th transition by Bh.

discount the reward received due to the h + 1
The value of the discounted model»is the expected value of the sum of

discounted rewards and, under weak restrictions, will be bounded in the
infinite transiticn horizon situation, Two arguments for concentrating

on the discounted model follow, First is the psychoclogical consideration

that a reward received immediately has a greater intrinsic value than the



same reward received at a future date, and that the same reward received
in the infinite future would have no value, Another view might be taken
by the engineering economist who would equate the discount factor Bh

to the present worth factor (1 + i)-h, where 1 is the effective rate
of interest for the period of time between transitions., In this context
the value of the discounted model could be labled the present worth'of
future rewards.

The stochastic process describing the stateAtransitions could be
other than a Markov process. However, the Markov process is mathematically
tréctable and is often a satisfactory assumption when modeling a physical
system, Examples are found in many areas including inventory control (8),
production planning (l4), equipment replacement (13) and Marketing (10).
Numerous examples are also found in the natural and physical sciences.

Howard (12) draws on the extensive accumulated knowledge of the
properties of a Markov process and on work by Bellman (2) to define, with
admirable simplicity, the Markovian decision prdcess as a dynamic
programming problem., A major contribution by Howard is the development
of a procedure to determine the maximum value of a system when the state
transition horizon is infinite, Manne (15), Wagner (20) and Derman (7)
formulated Howard's model as a linear programming problem, thus establishing
an interesting link between dynamic aud linear programming.

Howard assumed the transition probabilities and the rewards to be
constants. An extension of the Markovian decision process is obtained by
presuming that the decision maker is uncertain of either the transition
probabilities or the reward structure. The decision maker faces the dual

problem of choosing alternatives to maximize the value of the system and



using the information gainéd from observation of past transitions or rewards
to improve the quality of future decisions, thus suggesting the additicn

of a Bayesian component to the Markovian decision process. Robbins (18),
in ‘a paper written before Howard's work, raised a question related to this
problem. Given two statistical distributions and knowing only the class

of these distributions, what sequential sampling strategy will maximize
E(Sn), Sn =% + x, + cee +vxn, when x, may be drawn from either
distribution? Modification of this problem by the assignment of some prior
knowledge of the two distributions leads to the 'two—armed bandit" problem
discussed in papers by Bradt, Johnson and Karlin (6) and Feldman (9), and

a variation of the problem by Box and Hill (5).

Martin (16) first considered the Markovian decision process described
by Howard, and then assumed the transition probabilities to be random
variables with uncertain parameters. The parameters are described by prior
distributions. A strategy will depend on the past history of transitioms,
and the expected value of the sum of future rewards is conditioned on the
history of transitions. To obtain a computable model Martin required the
prior distributions to be natural conjugates of the densities of the
transition probabilities, Raiffa and Schlaifer (17) analyse this topic in
some detail. Silver (19) considered con?enient prior distributions to use’
with reward distributions. Others, including Billingsley (4) and Anderson
and Goodman (1), have considered statistics associated with !larkov chains,

This thesis is primarily concerned with a Markovian decision process
with transitions occurring at fixed intervals of time, state stationary
probabilities and discounted rewards, It differs from previous models by

assuming uncertain rewards, The rewards are considered to be random



variables from a known class of distributions. The parameters of these
diécributions are described by a set of prior distributions. Chapter II
considers a general decision model with uncertain rewards which places

few restrictions on the stochastic process involved. A less general

model is developed by restricting the mamner in which transitiens and
rewards are generated, A recursive equation of the value of the system is
developed. Chapter III applies the reéults of the preceding chapter to é
Markovian decision process with uncertain rewards. This allows the
modification of previous notation to a more economical form., Chapter IV
examines the Na:kovian décision process when the rewards are generated by

a Bernoulli process with a beta prior density function. A strategy is
defined and several theorems by Martin (16) concerning the existence and
uniqueness of the value of the systezm are given. Chapter V is concerned
with a method of calculating the value of a system when the state transition
horizon is infinite. Upper and lower bounds for the value are developed as

well as a method of selecting the alternative which should be chosen to

govern the next transitionm.



II. A DECISION PROCES: WITI UNCERTAIN REWARDS -

Before proceeding to a discussion of a Markovian decision process
with uncertain fewards, a more general decision process with uncertain
rewards will be examined, The reader may find the general model to be
an interesting topic in its own right, and the results of this chapter

are of direct use in Chapter III,

A., A General Decision Model

Consider a system which must be in one of a finite numhber of states,
At discrete intervals of time the system undergoes transitions which
allow it to change state, Immediately after each transition, the
decision maker receives a reward; the value of the reward received due to
the hth transition is discounted by Bh_l, 0 <3 <1, The value of the
system is defined to bé the expected value of the sum of the discounted
rewards received over a specified number of transitions., The transition
horizon is the number of transitions remaining before termination and may
be infinite. Prior to each transition the decision maker selects a
single course of action from among the alternatives available; the set of
available alternatives is a function of the current state of the system,
It is assumed that the decision maker has available to him the record of
transitions, rewards réceived and alternatives used, The alterative
chosen will govern both the transition and the reward received, Future
transitions and rewards may be dependent on the previous transitions and
rewards, Uncertainty concetﬁing the reward enters the model by assuming

the reward to be a sample from a distribution with an unknown parameter,

and a prior distribution of the parameter is specified,

-



It is now necessary 'to briefly describe a strategy for a decision
process with uncertain rewards. A more thorough description for a
Markovian decision process with Bernoulli rewards is found in section C
of Chapter 1V, As mentioned, the decision maker is assumed to have
perfect knowledge of past transitions and rewards. When the system is in
an initial state io and n transitions remain before termination, the
decision maker can specify the alternative to be chosea to govern the

first transition; call this specification kl(:LO ,1). Denote the states

and rewards by

j‘h = gtate of the system after the hth transition,.

h

= reward received due to the hT" transition. (2.1)

A bar superscript signifies a 1 x h vector, e.g. :l.h - (11,3.2, cos ih).
The alternative chosen to govern the second transition will depend on the
result of the first transitionm, il and Rl’ which wazs governed by the
specification kl(io,n). Denote the specifications used for the second

transition by ki R (io,n). The alternative chosen to govern the hth
) S S

(h < n) transition will be a function of all previous transitions and

rewards., Denote the gpecifications for the hth transition by

K _ (g, (2.2)

Th-1Rhe1
The number of specifications with the superscript h 1is equal to the
number of possible histories of transitions and rewards leading to the

hr'h transition. For a particular history leading through the first



h=l transitions, specification (2.2) dictates the alternative to be

chosen to govern the hth transition. The collection of specifications

kh o (ie,n), h=1,2, «e0 2, i8 a strategy D(io,n). This strategy

Ty sByer

specifies the alternative to be chosen prior to any transition in the
horizon for all possible histories leading to that tramsition, Note that
the gtrategy D(io,n) can be partitioﬁéd into those specifications
pertaining to the first h transitions and those specifications pertaining
to the last n=h transitioms; in additionv, the specifications which

h

pertain only to the ht transition may be considered. This allows the

following de finitions,

Dh = those gspecifications of D(_:L0 »0) pertaining
to the first h transitioms,

Dﬁ-h = those specifications of D(io ,01) pertaining

ih.Rh to the final n-h transitions given the
history Ih’ ih‘

h = those gpecifications of D(io,n) pertaining

k- -
1%l

to the hth transition. (2.3)

The most generalized decision model considered in this thesis is

developed using the following additional symbols.

B = a discount factor, 0 < B <1
m = a random variable representing the parameter of the

distribution from which R 1is sampled, €2.4)



Let the following stochastic triple represent the realization of the hth

transition.

{p m, R} = a (2.5)

Since only ih and Rh are observable, it 1s convenient to define

{i., R} = b, . (2.6)
When the system is initially in state iO and strategy p" = D(io,n) is

used, denote the joint likelihood of the sequence {il, m, Rl}’

{12, n,, RZ}’ ) {in. mn' F.n} by

n
m (eee3 1,, D) . 2.7)
al.az,oo.an 0
Since the sequence 31y By eee B cannot depend on any member of p"

other than the members of Dh, the marginal likelihood of 819 By e T

may be written

h
]. j. s j- wal'az’...an(...; 10, D )dan . dah+2dah+1
%+l Bht2 4

- (eees 1y, Dh) .. (2.8)

8198p900edy

The conditional likelihood of 8, given a1y 35y eee B depends oniy

on those members of D" which pertain to the choic2 of alternatives to



h

govern the nt trangition, and is written

*

T (oee} 19 Dh)
(2.9)

LPR VA AP S L I

hel, °
*n b, m )

(oso; io,
-1

,pl »npl

Analogously, the conditional likelihood of the sequence s Bps see &

given 815 3y o0 & depends on the members of p° pertaining to the

final n~h transitions and is written

4 (ooo/a p ooo0 s i Dn-h )
8 08 1eeedy 10 %0 %1% *o° Fh-l
. n
“81.82..'.an(.... 10’ D)
. — (2.10)
(0..; io. D )

n
Gpsdgsecefl

When a system which started in state io has n-h transitions
remaining until termination, the sequence @1y 35y eve B has occurred
and strategy D(io. n) = D° is being used, denote the expected value of

the sum of the remaining =n-h discounted rewards by

w(al, &2. eee ah; 10. D:-h) . (2.11)

By

Use the dummy variable a, to denote the lack of history when writing the

value of the system before the first transition,

The expected value of the sum of the discounted rewards when the



10

system is in state 1, and strategy D(io,n) is used is

n

w(a;i,nn)- ces T (a,, s soee 83 1. . D)
» 0 af f af al,az,...an 1 a2 n 0

x (Rl + BRZ + cee + Bn-an)dan. 0o daz. dal. (2.12)

In the following chapters, the desirability of writing equation (2.12)
in a recursive form will become evident., As the first step in this

directién, write equation (2.12) in the following manner:

n * 1
w(a,; 10, D) = f R1 . ‘n'al(al; i., D )da.1
3

- n
+ B af f... af ’ral.az'...an(all &2; [ XN ] an’ ioiD )
1 % n

x (Rz + BR3 + eee T Bn-ZRn)dan eeoe daz. dal

* . 1
f Ry “al(al' 1y D7)day
81 N
* 1
+8 [ wal(al, 1gs D)
1,8 .O.oa (al’az’.°.a io’D )

| S g A

1

x (R2 + BR3 + ese + Bn.an)dan ene da3’ daz dal
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* 1
= ‘[ Rl nalcal, 10' D )da1
4

* 1
+8 f Ry "al(al‘ 15 D)

81 R
* n-1
X l f f”a (8.,e..a (Bp0330eeeq /2;515,D_ )
a 273 n bl
8 35 n

n=2
x (Rz + 6R3 + coe S Rn)dan eoe danaz dal .

(2.13)

The first addend of equation (2.13) is the expected value of the immediate
reward (the reward received due to the next transition), and the second
the expected value of the sum of the remaining discounted rewards. The

value of the last n-l transitions given a, is

n-1 =1
wiag; 15, D; ) = f f"']"az,a3,...a (858550008, /2) 5 15, D'x;' )
1 a, a a n 1
2 3 n
x (R, + BR, + + %2R )da da.d
Rz R3 [ X N | n n o0 e 3 a2 L ]
(2.14)

Equations (2.12) can now be written in the following recursive form.
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*
w(a,; i5s D?) = j- R T, (al; 10, Dl)da1
1

3
* -
+ B J- m_ (a,; 1., Dl)w(a s 1, " 1)da {2.15)
3 1 0 1 0 T 1
8, 1

The maximum value of the system and a strategy which will achieve
that value are of major interest to the decision maker. Now introduced
are some problems that will be approached in greater detail in the

following chapters, particularly Chapter IV,

If A(io, n) is the set of all strategies D(io, n) then define

v(a,; io, n) = sup {w(a 3 iO' D(io, n))} (2.16)
D(io,n)sA(iO.n)

In the same sense, Vv( ;£; is, n-h) will denote the supremum of the
expected value of the sum of the discounted rewards due to the remaining
n-h transitions, given that the sequence 81y By eee B has occurred.
Equation (2.15) suggests a dynamic nrogramming problem and application of
Bellman's "Principle of Optimality" (3). Represent the alternative chosen
by the decision maker to govern the hth transition by kh’ (kh =1, 2, ...

i

in state i. In equation (2.15), replace Dl, the altermative chosen to

Ki)’ where K, 1is the number of alternatives available when the system is

govern the first transition under strafegy D(io, n), by kl and write
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*
v(a,; 1., n) = max { j- R,7m_ (a,; 1,, k,)da
0* 0 1<k. <K i 8 1> 70 1 1

el o io 8,

*
+ B j' T (al; 10, kl)v(al; io, n-l)dal} . (2.17)
a; 1

When an infinite transition horizon is considered, the parameter =n
will be dropped from the symbols denoting a strategy and the value of the

system, In this case equation (2,16) will be written

sup { w(ays 1y, D(io))} . (2.18)

v{a.; io)
D(io)eA(io)

Of interest are the conditions under which

2im v(a,; 10' n) = v(a,; io); (2.19)

n+>ow©

this will be discussed in Chapter IV,

B. A Less General Decision Process
Some restrictions will now be placed on the model of section A of

this chapter., A particular method of generating the conditional likelihood

* -
i (ah/ a i 10, kE, ) under strategy D(io. n) will be described and

n Ph-1
denoted, From this conditional likelihood, recursive equations similar

to (2,15) and (2.17) but for the less general decision process with



uncertain rewards will be obtained.

Consider a process which generates the stochastic triple (ih, LA Rh)
in the following manner. The probability of transition from state ih-l
to state ih depends on the past history of states, irs 12, eve ih-l' and

the alternative chosen to govern the hth transition. Denote this by

Pih( o/il, 12, cee ih"l; iO, kh) . (2020)

There is a reward distribution associated with each transition from state
ih—l to state ih and each alternative available when in state ih-l’
If N denotes the number of states in the system, there are
N N
L = Z NKi = N z Ki reward distributions from which Rh can be

i=] im]
sampled, The particular distribution sampled is indexed by ih-l’ ih and

kh' Let m represent the parameter of the sampled distribution and

denote the likelihood of Rh by

ERh( '/ih-l’ 13 B kh) . (2.21)
The decision maker is uncertain of the value of the parameter m and
views it as a random variable, Because there are L distributions from
which Rh can be sampled, there are also L distributions from which

m ~can be sampled. These distributions are also indexed by ih-l’ ih

and kh’ so that with each reward distribution there is associgted a
distribution of m with identical iadices. As part of the initial

conditions the decision mzker must specify L independent prior
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distributions. The distribution from which m is sampled is one of the

set of L prior distributions, the class of which is denoted by
o.C ) = {gCADs w=1,2, .o L} (2.22)

The specifications of the strategy discussed are dependent on the
transitions and rewards observed, and the expected value of the system
will be taken with respect to those observations, It will be necessary

to compute the conditional distribution of o given the observations

E%-l and §£-l; in Bayesian terminology this is the posterior distribution

of m and is denoted by

¢mh(./Rl. RZ’ ceo Rh-l' il’ 12, soe ih; io. kh,¢ ) (2.23)
Although 1t 1s necessary to state the alternatives chosen to govern the
first h-l transitions to completely index the reward distributions
sampled, these alternatives are known when the strategy is specified and
the history of transitions and rewards is given. The posterior

distribution (2,23) is obtained by application of Bayes theorem,

O Co/¥p 25 (Ry/ig,1y5my k)

- - ™ o1
¢ (/R _1 sl k,¥) =
" 1 ih 0 kh f¢\'ﬂh(%/wmh)£Rl(Rl/iO'il;ml’kl)
mh

QRZ(RZ/il,iZ;mZ,kz)...ZRh-l(Rh_l/ih_z,ih_l;mh_l,kh_l)

R L U e e N N ki o L S

X

2.24)



16

Because it is difficult to devise an economical notation which records
both the decision state and the distribution sampled, equation (2.24) is
somewhat cumbersome. When the indices of the reward distribution sampled
are not equal to 1h-1' :l.h and kh’ the indicés determining o, the
likelihood of that reward is functionally independent of o . Those
likelihoods in the denominator which are functiomally independent of o
can be placed outside the integral and will cancel with the corresponding
likelihoods in the numerator, The fact that the posterior distribution
of n is altered only by rewards sampled from ﬁhe reward distribution
associated with n 18 clear but somewhat obscured by the notation.

One interpretation of the reward structure just described is that
the decision maker knows the family of reward distributions but is uncertain
of at least one of the distribution parameters, Specification of the
unknown parameter as a random variable reflects the decision makers
uncertainty., In spifte of this uncertainty the decision maker must
initially estimate VY, a term containing the parameters of the prior
distributions and indirectly representing a partial knowledge of the
parameters of the reward distributions. The decision maker systematically
updates his initial estimate of Yy by conditioning the distribution of .
m, o past observations. In this manner the decision maker bases future
decisions on both Y and the observed rewards. But he must not lose
sight of the fact that the expected value of the system is functionally
dependent on the initial estimate of .

The joint likelihood T_ (v; iy, DY) of (2.7) can be written to

a
n

include the additional parameter .,
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n 1 - 1
L (e 10, D,VY) = Pi (o3 ioo k_ ’ ‘p)¢m ./ il; iol k_, V)
an 1 bo 1 bO
X £ (./i,m;i.k_.w)P (/1,4 m, ;i.k_.'#)
R, 1° %5 3o 5 1, 1* P10 Rps I 3

- = = 2 - = = 2
x ¢m2(¢/ 12. ml. Rl; io. k_z;. » Ib)ZRZ(./ 12. mz, Rl. 10. k.l; Y u‘) oo
1 1

P, (/T _am _1a R g5 g, k; » V)
n-1

- - L n
x ¢mn(o/ in. L Rn-l’ 10’ k_s_ » V)
n-1

x "R () in' ™ s Rn-l; iO’ k'}'; s V) . : (2.25)

o n-l

From equation (2.9), the conditional distribution of a given :h-l’ is

=

o

“‘h(°/ 13 Too 2,9 - By /L ge By Ry e ko 0 W)
Phe1 B he1

-— - - h
x¢_ (. "h’ mh-l' Rh-l; io. k_ » V)
o By 1
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- - = h
x R'Rh(./ ih. mh. Rh-l; io! k_b_ ] W) [ (2.26)
h-1

The assumptions made when describing the less general decision process

allow equation (2.26) to be written

- h - ., h
7 (/ ah-l; 10. kf; ) = Pih(o/ ih—l’ ioo k.s.

“n h-l h=-1

)

= - h h
x ¢ (o Rh-l' ih; ion kK, W2 (‘/ih_ll ih’ ms k. ) .
™ 5., b B,

(2.27)
An equation analogous to equation (2.15) but expressing the expected
value of the sum of discounted rewards for the less general decision

process when strategy D(io,n) is used can now be written

n - 1
wags 15, 05 W = [ [ [ & ACUBSENE
11 = R1 0

x ¢ (m/ 'io. 'fO;,io, ki » W (Ry/15, 1, o3 k_l_ )dR dm di,
1 b, 1 b,

i/ Tys g3 k20, G/ Ry Toi g0 ko 9)

vof [ f o, .

il o, R1 0 0



di., (2.28)

n=-1
X R'R (Rllio, il’ ms k_b_ )w(al, iO’ D§ . lp)dI-‘.ldm1 1

! 0 1
where iy, RO and bO
on the first transition. The equation similar to equation (2.17) but for

are dummy variables representing the lack of history

the less general decision process 1is

k)

1<k<K 0 H 10 ’

1 1 R

v(ag; ig, m, §) = max{[f]Rl'i(l/i
m

x ¢_ (m/ Ry Zb; igs ky w)lRI(RI/iO, i, m; k)R dmdi
1

+Bf f f P (i / ios 100 k)¢ (m / RO’ O’ 100 k, v
hmR

x 2. (R /io, i, ™ k)v(a igs n~-1, w)dh dm.d
1

G . (229



1II. A MARKOVIAN DECISION PROCLSS WITH UNCERTAIN REWARDS

The models of the preceding chapter did not restrict the probability
structure underlying the state transitions., By assuming that the state
transitions can be described by a stationary lfarkov chain, the results of
Chapter Il can be modified to specify the characteristics of a Markovian
decision process with- uncertain rewards. The singular properties of the
stationary liarkov chain, as applied to the decision process being
considered, are that the conditional probability of transition to state
ih given the transition history iO' il' eos ih-l’ is dependent only on
state ih-l and the alternative chosen to govern the hth decision; the
probability is functionally independent of the state history leading to
ih-l’ Stationarity refers to the functional independence of the tramsition
probability and the number of previous transitions., Assuming that the

state transition probabilities are represented by a stationary Markov

chain, the probability (2.20) may be written

SN S IR QCNTL R (3.1)

Equation (2.28) scated the expected value of the sum of future discounted

rewards under strategy D(iO;n) for the less geﬂéral model, For a

Markovian decision process with uncertain rewards, the value of the system

w(a;io,n, z f[lx-P(lll ';)

i =] ml 1 0

is
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— ?
b b

- - 1 1
x ¢m1(m1/ Rps 1g3 1gs K ”‘Rl'(Rl/io' 1ys myi k_J)dRidm
| 0 ‘ 0

ol = = 1
ve > [ By (/g k00 @/ o Toi 1g0 ko )
1.1 m R 0 0
1*t MRy
x Lp (Ry/ig, 1y, w3 ki ywla s 1,, D:'l. V) dR, dm, (3.2)
! B, B,

It is possible to write equation (3.2) in a more compact form by
modifying some of the notation of Chapter 1I., Rather than specifying the

h.

state of the system before and after the ht transition by 1h-1 and

ih’ use, when possible, the indices i1 and J to refer directly to the

state of the system, Use the following notation for a Markovian decision

process,
p:,j = the probability of transition from state 1 to
state j when alternative k governs the tramsition.,
Et’j(./m) = the likelihood fuanction of the reward received due

to transition from state i to state j when
alternative k governs the transition; m is a
random variable representing the parameter of the
function and the density of m is indexed by i, jJ
and k.

¢:.j(.;¢) = the prior density function of m indexed by 1, j

and k.,
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¢i,j( 1. PNzt ese Rh-l' ilt 12 X ih-z; ioa Y) =

the posterior density function of m indexed

by i, j and k and conditional on the obser-

vations Rl’ R2, eee Rh-l; let 1 = ih-l and

j = i-ho (303)
Reduce the notatioﬁ required when denoting the posterior distribution

of m by letting

kh kh h
¢i.j( / Rh l’ ih 2! 0) \b) - ¢i.j( W) . (3.4)

This notation may be taken to imply that the posterior distribution of m
is of the same family as the prior distribution, with wh denoting the
value of the parameters of the prior distributions updated through the
(h-l)th transitioni, Chapter IV considers a reward structure of this type.
The author is indebted to J. J. Martin whose book (16) suggested the
following notation. Let ” (R,¥) denote the parameters of the posterior

1,3

distributions given one additional reward observation R sampled from the

distribution indexed by i, j and k, so that

of G (R/m) .

k

= ¢, (G T, ,(RyY))
k . k i,3 i,]

[ 4 5 (m,tp)zi’j(R/m)dm

m

o (G /R )

(3.5)

The conditional 1likelihood of a given SL-I for the less general

decision model was specified in equation (2.27), For the Markovian
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decision process, the analogous equation.is

h h h
k k
k;h-l T:'h "1':'

- h
ﬂ (0/ ; i » k— [ ]
a -1 %0 5,
(3.6)

Before rewriting equation (3.2), consider the first addend on the

right hand side of that equation, which represents the expected value of

the reward received due to the next transition.. When the system is in

state i oprior to the hCh transition, denote the expected value of Rh

by

qi ('b) - 2 IIR P (m.!ll) khj(R/m)dem . 3.7
j»1 m R

The value of the sum of the remaining n~h discounted rewards is now a

function of the current state of the system and the updated parameters of

the prior distributions. When ih = i, let

. w) - w (D l w ) L] (3.8)

b,

w( ah, 10’ D
®h h

Rewrite equation (3.2) using the notation developed in this chapter.

1 1,1 1
k N k. Ok k_

b b b b
n 0 0 (¢} 0
w 0%, W = q OV +8 21 ] ]pi,j 6 3 (5 W) % ] (R/m)
=l m R
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Kl
x (D“‘1 rb°(x ¥)) dRdm | (3.9)
"3 e U R .

The dynamic programming formulation of the Markovian decision process with

uncertain rewards is

N
k
e {qfw+s Y [ [} ¢ @w
k <K ’ ’
kIR j*l m R

v,(n, ¥) =
1 1

x z‘i"jcx/m)v (a-1, T° (R, ¥))dRdm } , (3.10)

] 1,3

where vi(n. V) 1is the supremum of the value of the remaining n

transitions when the system is state 1.



25

IV. A MARKOVIAN DECISION PROCESS

WITH UNCERTAIN BERNOULLI REWARDS

This chapter wiil analyse a Markovian decision process with uncertain
rewards and with a specific reward structure, First a particular reward
likelihood and prior distribution will be specified, and then the results
of Chapter 1III will be used to obtain equations describing a Mark'ovian '
decision process with Bernoulli rewards. A str#tegy for the case when
the number of possible rewards is finite will then be described im detail,
Finally the existence and uniqueness of vi(lp) » an optimsal strategy and

bounds of the function Ivi(n,ﬂ.') - vi(W)l will be considered.

A. A Discrete Reward Structure
The reward structure to be considered assumes that rewards are
generated by a Bemoulli process. The parameter of this process is
uncertain; this uncertainty will be described by assuming :ﬂe parameter
to be a random variable defined by a prior distribution., Describe the

likelihood of the reward sampled from the distribution indexed by 1, j

and k by
z‘i‘ J(R/m) = o (1 - ml%,
|

0<m<1, R = R(1), R(2), x = 1 when R = R(1)

x = 0 when R = R(2) . - (4.1)

The pavrameter m in (4.1) is a random variable to which a prior

distribution also indexed by 1, jJ and k wmust be assigned, Two criteria



should be considered when selecting a prior distribution. First, the
distribution must appeal to the model builder's intuition and seem a
reasonable way in which to describe m., The second criterion is more
objective. For the model to be useful, the posterior distribution of m
must be calculable. Raiffa and Schlaifer (17) have extensively examined
the class of prior distributions which are natural conjugates of the
process (i.e. reward) distribution., The natural conjugate prior density
function has the characteristic that the posterior density 1s of the same
family as the prior density, and that the parameters of the posterior
density are often simple functions of the parameters of the prior density.
If the model builder's intuition allows him to reduce the set of candidates
for the prior distribution to the natural conjugate prior, he will acﬁieve
a large return in terms of computability.

When rewards are generated by the Bernoulli process described in
(4.1), the likelihood function of the sample Rl’ RZ’ cee Rt from the

distribution indexed by i, j and k is

T mi(lem * = = -mtS;
im=]
t
s = z % x; = 1 when Ri = R(1)
1=l x, =0 when R, = R(2) . (4,2)

i i

The natural conjugate prior density of the likelihood (4.1) is the beta
distribution, This is verified by observing that the density function of

the prior distribution varies as the likelihood function of the rewards.
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1(1 - n_.)t-sz-l

f (m; s, t) a o . (4.3)

beta

When the beta distribution is chosen to describe m,

Km0 = o5 (m3s,t) = i a1 -2 | (4.0

°1,3 %1, B(s, t5)

}

Because the natural conjugate prior distribution has been selected, the

posterior distribution is also a beta distribution with parameters as

shown below,

tl
1=
2L 1oy tl m’%(l_m) *h
k . . h=l
¢i,j(m/R1' Rzn cve Rtas 8; t) 1 g -
[ ms-l(l-m)t-s-l I mxh(l-m) “n dm
0 h=]
1 s+s'=1 tit'=(s+s')=1
* B(sts', t+t'=(ats')) (1-m
- X (mss ', t4th
/i,j m; 8 +8, t t »
t! ,
s'-z X » xhnlwhenR-R(l)
hel x = 0 when R = R(2) . (4.5)

As indicated, the parameters of the posterior are a simple function of the
- parameters of the prior, the total number of observations and the number

of those observations equal R(1l),
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-n
=

The marginai distribution of R 1is

1
k oy = oK . - X, y1=x 1 s-1 t-s-1
li’j(R,l,‘)) Ei’j(R, s,t) ] m (1-m) ——_B(s,t-s) m  (l-m) dm
0
S \X , t=8 l-x

=(T) (=) ;

x = 1 when R = R(1l)

x = 0 when R = R(2) , (4,6)

where s and t are the parameters of the prior distribution indexed by

i, j and k. The expected value of R is

K R. - L - s t=s
Ei,j(R’ S,t) 2 R zi,j(a, s,t) R(D) Y + R(2) T . 46.7)
R

N
There are L = N jz Ki prior distributions, and the parameters
im=]
s and t must be specified for each distribution. The symbol ¢ denotes

a 1 xL vector containing the parameters of all prior distributions, The
decision maker must estimate s and t for each of these distributions

in the manner which best reflects any prior intelligence about the
corresponding reward distribution, One point of view is that the ratio
s/t should be selected to correspond with the decision maker's estimate

of the expected value of R, and that the magnitude of t will reflect
his certainty of the estimate of the expected value, A large value of t

indicates a great deal of confidence in that estimate, while a small value
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of t would allow a more rapid relative change in the posterior parameters
and indicate less confidence in the initial estimate of the expected value

of R,

B. The Expected Value of the Sum of Discounted Rewards
Equation (3,9) defined, in recursive form, the expected value of the
sum of discounted rewards for the Markovian decision process with uncertain
rewards, Using the reward likelihood (4.1), the prior distribution (4.4)
and the notation of (4.6), the value of the Markovian decision process with

uncertain Bermoulli rewards under the strategy D(i, n) can now be written

K . K Kk
b, - by T P -1 B,
v % W =g YW +BY By ] D 4] & v 0T T S @ W,
=l R
i = 1. 2’ 'YX N’ R = R(l). R(Z) [ ) (408)

Analogously, equation (3.10) is now

v,(m, ¥) = max { qi(w)

1<k <K

N
+8 ) o5 D LR v el T R W),
jul R

i=1,2, «¢¢0 N, R = R(1), R(2) . (4.9)

For an infinite transition horizon, equation (4.9) will be written
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N
k k k k
v.(¥) = n q ;¥ +8 P 2, (R; v (T, (R, ¥)){,
i 1 <k <K { i 2 i,3 z i,3 37 1,3 }
- - §=1 R
i - 1. 2. see N. R - R(l). R(Z) . (6010)

The remainder of this thesis will focus on the properties and solution of

equation (4.10).

C. A Strategy for a Markovian Decision Process
with Uncertain Bernoulli Rewards

A strategy for the decision process described in the pfevious section
will now be described. For an n transition horizon, a sampling strategy
will be constructed by first specifying a strategy for a tramsition horizon
of one, amending that to obtain a strategy for a horizon of two and
proceeding sequentially to the n transition horizon strategy. Since
there4are a finite number of states and rewards, the number of strategles
will be finite if the transition horizon is finite.

If the system is in state i and the alternative to govern the next
transition has been chosen, the decision maker can select a policy vector
which will specify the alterhative to be chosen after the next transition,
give the outcome of the next transition and the reward received due to that
transition, Because there are 2N pocsible.cutcames of a transition and a

reward, the policy vector is a 1 X 2N vector denoted by

U - (kl.l. .kl'z' kz’l. kz’z. LN N ] kN’l. kN.z) L] (4.11)



Element kj = 1, 2, 3, «ee K denotes the alternative to be chosen
’

k|

if the next transition is to state j and the reward received due to the

transition is R = R(R), £ = 1, 2, Let jz be the finite set of the

‘N
J= I Ki policy vectors 0. Index the policy vectors by the integers
im]

0 through J -1,

ji - (co, O1s Tps wes UJ-I) (4.12)

Assume that the system is initially in state io and that alternative

ke k = (1, 2, 3, .es Ky ), has been chosen to govern the first transition,
0

Before the first transition the decision maker can specify a policy vector

d(l) = cal 1, al,l = 0, 1,2, oo J =1, which specifies the alternative
’
to be chosen to govern the second transition. Let D2 = D(2, io, k, d(1)),
be called a strategy for a horizon of two transitioms,
A strategy for a horizon of three transitions can ke defined by
stating D2 and specifying the 2N policy vectors which will dictate the
alternative chosen to govermn the third transition. There sre 2N possible

state-reward histories leading from io to the outcome of the first

transition, These may be denoted by

x, (15 %), 1,21, 2, oo N

21 bd 1, 2, (4013)

where il is the state of the system -after the first transition and 21



completes the description of the observed reward. Because iO and L
are known, the reward received due to the first transition is known to
have been a sample from the reward distribution indexed by iO’ il and k.
There must be a policy vector specified for each possible state-reward
history. The following function of xz(il, 21) is a 2N¥~ary number which
will be used to order the state~reward histories,

2(x,(1), 2)) = ¥(i], nl)(zm)‘l ,

yli, £) = 20, =1 +2, -1, i=1,2,3, oo &

Associated with each state-reward history is the unique number z(xz(il,ﬁl)).
Order the state-reward histories so that xz(ii, Qi) < xz(ii', li') <

xz(li", Ri") < ... when z(xz(ii, Qi)) < z(xz(ii’, Qi')) <

z(xz(ii", Qi")) .+ and index the histories with the digits 1 through

2N, assigning the history associated with the smallest value of

z(xz(il, Rl)) the integer 1, the next smallest the integer 2 etc. .
The state-reward histories frem iO through the first transition mary now
be denoted xz’l, x2,2’ x2’3, N XZ,ZN where the first subscript indicates
a historv through the first transition and the second subscript refers to
the ordering index just described., Denote the policy vector selccted by

the declsion maker when strategy D2 is used and state reward history

. 2
xz,8 is observed by vy(2, g, D7) caz p, az.g 0, 1, 2, e J~-1.,
’

o~

Define the 1 x 2N vector v(2) = (o , O y U y oee O R
o1 %2 %23 %2, 2
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Lengthen this vector by attaching the element d(1) to the front of Y(2)

and denote the result by

) 00e O ) . (4,15)

d(2) = (o » O s ©
%, %R,1 %22 %2,28

A strategy D3 for a horizon of three transitions is

The strategy D3 explicitly stateg the alternative to be chosen to govern
the first, second and third transitions as & function of the observed

transitions and rewards.

he=1

In general, to construct a strategy Dh given D‘_ it is necessary

to specify (ZN)h"2 additional policy vectors since that is the number of

possible state-reward histories xh-l(il' L0 15 22. eee Lo Eh_z)

leading from 10 through the (h-2)th transition. As before, the state=-

reward histories can be assigned a 2N=-ary number.

h=2

-m
20, (s 210 Tp0 Zpe eee a5 00) = D vl D@D
m=]

Y, £ =20 -1 +2 -1, 1=1,2, oo N
2=1,2 , (4.,17)

Order the histories as before, so that

X1 Gl 210 150 20 eee Iy o0 B 00)
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< xh 1(1 f,". zé', eve Lh 20 2"2)
wvhen Z (xh.l (ii » v li » ii N Zi s oo 1;1-2’ 2&"‘2))
< z(xb l(i" Eil. 15" 2il. .os Lh 2. lll )) ’

and index the histories with the integers 1 through (2N)" -. The
policy vector to be selected prior to the (h-1) th transition, when the

history through the (h-Z)':h transition identified by the ordering
index g has been obsetved. is y(h-1, g, D h 1) - cuh « Let the
: ~1,8

he2
1 x (ZN) vector Y(h‘l) - (U [+ see O )
b, b=2

%h-1,1

specify the policy vectors selected prior to the (h-l)th transition

%=1, (2N)

and which in turn will dictate the alternative to be chosen to govern the

h™®  transition. Combine y(h=1) and d(h-2) to obtain d(h=l).

d(h-l)-(d s C s O p vee O ) s o0 O -)o
o1 %,10 %2 % .2n 93,1 %1, (2072
(4.18)
The symbol d(h-l) denotes a 1 x M(h-1l) wvector where
M(O) = O

h

M) = > @FhR=1,2,3, . . (4.19)
g=1

The h transition horizon strategy is
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P = D(h, 100 k, dh=1)) . (4.20)

Call A(io, n) the set of all n transition strategies when the
system is initialljr in state io. When n is finite, the total number

of unique strategies contained in the set 8(i,, 8) 1is finite and equal

s =k, ),
i

D. The Existence and Uniqueness of vi(w)
Some results from Bayesian De'cis:lon Problems and Markov Chains by
Je. Jo Martin (16) are very useful at this point. A model which Martin
developed and the model of this chapter have certain similarities, and
several of his theorems, with only slight modifications, apply to a
Markovian decision process w.ith uxicertain Bernoulli rewards. In this
spirit, four theorems based on Martin (16, p. 38=44) follow, The proofs

given are from Martin but with the required changes.

Theorem 4,1, Let wi(D. Y) be the expected value of the sum of discounted
rewards when the system is in state 1, strategy D 1s used and the

transition horizon is infinite. Let
v, (¥) = suwp {wi(D. w} . (4,21)
DeA(i)
Then there is a strategy D*cA(i) such that

vi(lb) - w (D% y) . (4.22)
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Proof, TFirst it will be shown that vi(lll) is bounded, Denote the

possible rewards from the distribution indexed by 1, j and k by

Rk W, 2 =1, 2, IfRx = max {Rk (2)} » then the maximum value
1.d 1,3,k,2 1, '

of the sum of discounted rewards which can be received is

2 ghl pe = ‘i% . | (4.23)
hel

Letting & denote the set of all d in the strategy D = D(4, k, d),

equation (4.21) can be written

v, (W) = max sup {wi(k, d, P} (4.2%)
<k <K  ded

1 1

To each de§ 1let there correspond the J-ary number

o
) - (M(h=-1)+5)
a(d) 2 Z a4 J (4.25)
el el

where M(h) is defined in equation (4.i9). For any de6, 0 < a(d) <1,
and in addition equation (4.25) is a one=to-ocne mapping of the set §
onto the closed interval [0,1] « For fixed 1 and k let glic(a. Y) be

a function defined on [0,1] by
8:(3. Vo= vk, d V) . (4.26)

Then equation (4.24) can be written
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vi(w) = max sup {sl;(a, W)} (4.27)
0<ac<l

To show that for fixed k, 81;(8’ Y) 1is continuous in a let

o

rew= max ([ @[}, mee mn (IR I . @29
1,3k, ’ L ’ -

ilj’ »

For a given £ choogse a positive integer n such that

™ (B cg (4.29)

For a fixed a ¢ [0, 1] let a' be any number such that 0 < &' <1 and

|a - a'| < JV. If a=a(d and a' = a'(d") then

o - g hel,2, eec (V=1)

g=1,2, oo 20OV2 (4.30)

Since both strategies are identical through the first v transitioms,

o

2 Sh‘l (R¥*epki)
heyt]

A

Isi(a. ¥ - si(a'. W |

- ' ET< € (4.3D)

So gi(a, y) 1is a continuous function of a on the compact set [0, 1]

and for each k there exists an ai‘ € [O, 1] such that



k ' i K
g(as V= :s:pi LA wk o (4.32)

Letting d*(k) denote the inverse image of aﬁ = aﬁ(d*),

{v,x, ax@, W}, (4.33)
1

vi(w)

max
1<k <K

and there exists a strategy D* = D*(1i, k*, d*(k*)) such that

v, () v, (D%, ¥) . QED, ' (4,34)

Theorem 4.2, If the set of functions {vi(n, w)} is defined by equation

(4.9) then the limits

Lim vi(n, P) = vi(w), i=1,2, ¢eoe N (4.35)

n > <«
exist and {vi(w)} is a set of solutions to equation (4.10),

Proof. It will be established inductively that for arbitrarv positive

integers n and m,

n ,m
vy, ®) = vy(my 0] < BB mex

i = 1’ 2’ LN N’ n’ m =0’ 1’ 2’ LI ] [ ] (4.36)

where R** = max {IRE j(2)[}. Because 0 < B <1 it follows by the
1,3:k,8 ’ '



39

Cauchy criterion that Lim vi(n, Y) exists for i=1, 2, ... N. By

n-b&

allowing n to go to * in equation (4.9), it follows that the limiting

functions satisfy equation (4.10), Let

N
Sivem, W = i+ D b D A R W@, T (R W)
4=l R

(4.37)
To establish equation (4.32) let

ax  {sf(v, o1, B} ,

n
1 <k <K,
-~ i

vi(a, ¥) = Si(v, n=1, V) =

IA

v(m, ¥ = Sy, » = wax sk, =1, 0},
1<k <K

then
v, ¥) = v, (@, ¥) <S{v, =1, Y = S{(v, =1, 9)

Vi(na ) - Vi(m. ) z si(v. n-1, ) - Si(vb o-1, ¢¥) . (4.38)

Let k* index the larger of [S:(v, n=-1, ¥) - Sg(v, m=1, V)|

and [S3(v, a-1, W) - S3(v, m=1, ¥)| . Then

lvy(a, V) = vy(m, W] < IS5 (v, a=1, ¥) = S§ (v, w1, O]

1,3

N
=8 S S A w wlveel, T & v
3= R
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®, M|

- v, (o1, T

3 j

i-l' 2. eoe N’ n'm-o’ 1. 2. o8 e

Assuming that vi(O, Y) =0, i=1, 2, ... N, then

n
[v,(a, Wl < z gl pax a -}:—S—R** .

h=l

Therefore, assuming that n > m,

n-m
lv (n-m, V)I < ——-i_g R¥x

An inductive argument using equations (4 39) and (4.41) shows that.

msn

v,y W = v (m, 0] < BB e,

and a similar argument for the case m > n yields equation (4.36).

Proofs of the remaining theorems in this section will not be given,

(4.39)

(4.40)

(4.41)

(4.42)

Q.E.D,

Modifications of the proofs to Theorems 4.1 and 4.2 are typical of those

necessary for the remaining theorems, and the required proofs follow almost

directly from Martin.

Theorem 4.3. There exists a unique set of functions vi(lb) which

satisfies the set of equations
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v,(w) = max {q“(w) + i z pk 2 ™ (R3u)v u‘k (K3}
1 1 <k <k 1 1,3 i,] 37 1,1
- =" j=1 R
i=1,2, oo N, R = R(1), R(2) . (46.43)

Theorem 4.4, If {vi(W)} is the unique bounded set of functions which
satisfy equation (4.10) and if Zi,j(R; Y) is a continuous function of
Y(k =1, 2, ,so Ki; i, =1, 2, .o« N), then vi(do is a continuous
function of Y (L =1, 2, ... N).

It has now been shown that the set of solutions {vi(¢)} to equation
(4.10) exist and are unique, and that there is an optimal strategy D*
which will achieve {vi(w)}. The decision maker would like a method of
determining, or at least approximating, the set of solutions {vi(w)}.

A nore immediate problem facing the decision maker is the choice of the
alternative to govern the next transition. Before proceeding to Chapter V

and a discussion of these problems, three additional theorems from Bavesian

Decision Problems and Markov Chains (16, p. 44-50), but modified to apply

to the model of this chapter, will be stated.

Martin has developed a bound for the error function |e(n, ¥)]
= lvi(w) - v, (n, ) |. The bound converges monotonically to zero, and n
can be chosen such that the resulting error bound is small enough to make
vi(n, ¥) a satisfactory approximation to vi(w). The following theorems

concern this bound,

Theorem 4.5, The value vi(w) has the bounds

r* R¥*
g 2 v. (¥ < 18 ° (4.44)
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k k
where r* = max R, ,(2)} and r*=  @min R, ,(0} .
1,1,k,8 s 1,1 ,k,% g

Theorem 4.6, Let vi(n, V), as defined in equation (4.,9), be a sequence

of successive app'roximations. Then the error term of the nth approxi-

mation has the bound
le(a, M| < 8™ (max {% : '}f—;' H . _ (4.45)

Theorem 4,7. Let the generalized state (i, ¥) be fixed and let

A(l, YVeA(1) denote the set of optimal strategles for the Markovian
decision process of equation (4,10), If D*(i, n) 1is an optimal strategy
for the problem defined by equation (4.9) thén, as n + o, D¥(1, n)

ultirmately lies in A(i, V).
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V. CALCULATION OF THE SLT OF SOLUTIONS {vi(w)}

TO TRE MARKOVIAN DECISION PROCESS WITH UNCERTAIN BERNOULLI REWARDS

Theorem 4.5 provides a bound for the error term |e(n, ¥)| =
Ivi(w) - vi(n. v)| which is a monotonically decreasing function of n.
The value vi(w) of equation (4,10) can be approximated by calculating
vi(n, Y¥) of equation (4.9), with n chosen large enough to reduce the
bound of the error term to a magnitude accéptable to the decision maker.
The practicality of this method of solution is seriously limited because
of the excessive time required to calculate vi(n, ¥). Consider the
simple "2x2" prcblem in which the system consists of two states (N=2),
and there are two alternatives available in each state (Ki =2, i=1, 2),
For fixed k the equation describing vi(n, ¥) contains four different
values of v, (n-1, * (R, ¥)) and since- k = (1,2), there are a total

h i,]
of eight values of v3(n-l, o (k, ¥)) which must be calculated. Each

i,

of these in turn generates eight additional values until vj(l, Ti,j(R’ ),
which requires only two calculations, is reached, Solution of vi(n, V)
for the "2x2" case therefore requires 8n-1-2 separate calculations.

The bound of |e(n, ¥)| 1is a function of the discount factor, 8.
If B 1is the present worth factor for a compounding period of one, then
8 =1/(1l + i) where 1 1is the effective rate of interest. A typical
rate of interest might be 10% per vear, so that 8 = 0.9, Should the time
interval between transitions be less than one year, 8 will be greater
than 0.9 if the ananual rate of interest of 10%Z is to be maintained.

Assuming 8 = 0,9 to be typical, then g™ converges rather slowly. For

example, ten iterations would reduce the initial error bound by a factor
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of approximately 0,35, while the number of separate calcuiations for the
"2x2" case necessary to calculate vi(lo, V) would be approximately
2,7 % 108. These considerations may create some concern about the
practicability of applying the Markovian decision process with uncertain
Bernoulll rewards to a real world problem unless a better method of
solution can be developed. The purpose of this chapter is to develop
bounds for vi(uo which are relatively quick to calculate, an& to develop
a method of determining the alternmative which, for a fixed 1, should be
chosen to govern the next transitionm.

The Markovian decision process with uncertain Bernoulli rewards is
conceptually similar to the discounted model discussed by Howard (12,

p. 76=91), except that Howard assumed the rewards to be known constants,

let

At,j = the reward received due to transition from state 1
to state J when alternative k 1is chosea to govern
the transition.

A = ga 1XL vector containing the rewards Ai,j for all

i, j and k. (5.1)

When the state transition horizon is infinite and the system is in state 1,
Howard has defined ui(W) as the expected value of the sum of future

discounted rewards under an optimal strategy, where

N N
k k k
by = max { 2 Pi,g8,5 %8 2 DRRACH
=N gml =1

i=1,2, ... N, (5.2)
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i

and has shown that the set of solutions {ui(A>} exist., /An important
contribution by Howard (12, p. 76-87) was the development'of the value
determination operation and the policy improvement routine, which together
form an iterative method of calculating the set of solutions {ui(A)}
to equation (5.2)., From equation (5.2) it is clear that the alternative
to be chosen to govern the next transition depends only on 1, the
current state of the system. Denote the state stationary strategy which
yields {ui(A)} by $(A) = (wl, Wys eee mN), where Wy is the alternative
to be chosen when the system is in state i, With reference to section C
of Chapter 1V, the decision maker always chooses the same policy vector
and ignores past history,

Consider another similar Markovian decision process; suppose that the

rewards are random variables whose distributions are known. Let

£k (.; A) = the density function of the reward recelved
due to transition from state 1 to state ]

when alternative k s chosen to govern the

transition,

A = a 1xL vector containing the parameters of

f‘; («3 A) for all i, j and k. (5.3)
]

Then the following equation, which is analogous to equations (4.10) and

(5.2), can be written

k k
x,(A) = max { D R f (R; A)dR
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N
X X
+ 8 2 % ffi,j(R; Nx (Mar}
=1 R |

i = 1. 2. (XX} N L] (5'1‘)
Denote the expected value of a reward by
k
E R) = fR fk R; A)dR
i.j( ) 1.-1( ) h
R

and let

E(RA) = a 1xL vector containing the expected values

EX (R) for all i, j and k. (5.5)

1,3

It will be shown that the set of solutions {xi(A)} - {ui(E(RA))} .

Since xi(A) is a constant, equation (5.4) can be written

N
- K . 3
x; () 1::::«1 { jzl P j Rf R fl;’j(R, A) 4R

N
k L3
+8 Y SPERC ff‘;dm, A)dR}

=1 R
N N
k k k
T s {2, PLy @ +8 3 vy xy®]
Sy gm 3=l

1im1,2, eee ¥ (5.6)
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K k :
Substitute Ei,j(R) for Ai.j in equation (5.2). Then “i(E(RA)) of
equation (5.2) is of the same functional form as xi(A) . of equation (5.6)
so that ui(E(RA)) - xi(A), is= 1,' 2, «se No Therefore the Markovian
decision model described by (5.3) and equation (5.4) is equivalent to the

discounted model discussed by Howard.

The ﬁreceding discussion leads to a method of obtaining a lower bound
for vi(W) which, in most situatioms, will be much larger than the lower
bound given in Theorem 4.5. The expected value EI;. j(R; V) was defined

»

in equation (4.7). Let

E(R; ) = a 1xXL vector containing the values Elz j(R; ¥
»

for all i, j and k. (5.7

The state stationary strategy S(E(R; ¥)) 1is the optimal strategy

associated with the set of solutioms {ui(E(R; M} to equat_ibn (5.2).

Theofem S.1. The value of a Markovian decision process with uncertain -
Bernoulli rewards, given that the state tramsition horizen is infinite

and that the state stationary strategy S(E(R; ¥)) is used, is, from

equation (4,.8)

N
w (V] w
. 5 1 i i,
vi(ﬂ(E(R.w)). ¥) q" + 8 z Py 4 z li.j(R. V)

=l R
Wy
* g @ER 0, T ® W)

i= 1’ 2..0-0 N’ Rm= R(1)| R(Z) . (508)



If ui(E(R; V)) 1is the solution te equation (5.2), then wi(Q(E(R; v)))

= ui(E(R; w)), i= 1, 2, eoe Na

Proof, To simplify notation let Q(E(R; ¥)) = (wl, Wyp eee wN) = (W,

It will be established inductively that

N
w, (AR; W), W = P E; , (R ;)
1o 1:§£ igel; ity
1

iy = 1, 2, «0a N, (5.9)

By letting E?,j(R; y) = A?,j it is clear from equation (5.9) that
wi(Q(E(R; v, v = ui(E(R; ¥)).

Let Qn(E(R; Y¥)) denote a n state transition horizon even though
the state stationary strategy is independent of the number of transitioms,

Then equation (4.8) can be used to establish equation (5.9).



N
1 k W .
o @ EE® D), 9 - > PLt >y APROTE
11.1 R1 :

wio(ﬁz(E(R; M, V) = Z p‘; { 2 R, !':’ i (Rlz V)
i, =1 R

N

N
+ B Py E 22 . (R W) p
}E 1,4 1 1. (R 25 1,1
o'l 0013 )
1,a1 R, 11

W w
x E (R, T (R,, 1)) . (5.10)
1,1, ) 15ei; "1

It is necessary to show that

’ N
w . w w . ol
Rl h=l

N
W W
= D aEaR W (5.11)
h=1

Equation (5,11) can be written

N,
© ) w w @ .
D L w (Y By D [ R e @ v |,
R, h=1 R, m

(5.12
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where ¢ 3, h(m,RI; Y) 1is the posterior distribution of m given Rl and
is determined by the application of Bayes theorem as shown in equation
(4.5). As mentioned in the discussion following equation (2.24), the
posterior &istributiou of m differs from the prior distribution only
when the reward observed iz sampled from the distribui:ion with indices
identical to those of the prior distribution of m. If i ¥ j then

§ @R W - ¢?.h(m; ¥) since the likelihood of R, is z‘i’. 3R W,

%,
When 1 ¥ 3 equation (5.12) can be written

2 g 1,313 ¥ z Py b > [re h(R /6 @i Pdm
| hel RZ ‘m

N
w @ w
- 2 2y 4Rys ¥ z Pyh By ntkes ¥
h=1

R

N

w w .
z pj .h Ej ’h(R. W) . (S. 13)
he=l

For the case i = § and h ¥ j the preceding argument is valid, and when

i = j = h, that element of equation (5.12) is

w W w W
> 2, 1(Rys W By g > 2y ,1(Ry/m)6] , (w/R,)dm
&1 R

s+l t-8
= Py :[Rzm o T RO ?-:r]
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t-s B 5y Ltrl-s
* T[Rzm w ot R® -—m]

w |s t-s W W o,
- pi.i ['E &(1) + t RZ(Z)] - Pi.i Ei,i(R' w) N
(5.14)

Using the results of equations (5.13) and (5.14), the second equation of

(5.10) can be written

N

I’ - W w .
oy G W), 9 > Py B e B ¥
1 %1
N N
w w w ) .
+ 8 2 P10t E P11, Eil,iz(az’ v s
1 =l 1 =1
1 1
N
v @ER D), D = D By B R W
0 . L ot ot
N N
w w . )
+ 8 Z Pinl, 2 "10.11(31' ¥) z Pili,
1 =1 1 =1
1 Ry 1
(] w
x E (R, T (R,, V)
1,1, %% T1o 1 o
N

w w )
D) Piod, 2 by, Beb Ty g Rps WD)
1, =1
2 %



w w (i) V]
x z P E2 , Ry T, (R, TV, (R, WD)
e Loty T1,,1, 03 Ty 0 B Ty g Ry
h
N
w W
= > e E L REW
1 =1
1
N N
+ 8 EE Py A EE Py A By FRUTAL
a7 1 G iz ek
N N
w
"’529’1,1“‘1"” 2 Py 1 Z Py 1
R, o1 a1 2150 2
1 2 3
w W
x E (Rys T (R,, ¥))
1,51, %% T1 1 (1
N
w w
- ji P E (R;; ¥)
toel; Tioed; R
s
1
N B
+ B 2 Py z Py . EY . (R W
£ 1gsig & 1.4, *1,1, R
1 &)
N [~
$ 80y B (D R B R W . (515
1°h2 2013 1p0i3
1,71 1,1

An inductive argument using equations (5.13), (5.14) and (5.15) establishes
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equation (5.9) for the infinite state transition case. Q.E.D.

A theorenm concerning the lower bound of vi(w) is now stated.

Theorem 5,2. Let ui(E(R; U)) be the solution to equation (5.2). Then

vi(w), the solution to equation (4.10), has the lower bound
i=1,2, .o N . (5.16)

Proof. It was shown in Theorem 5.1 that ui(E(R; P)) = w, (UER; §), ¥);
by equation (2.18) vi(w) 3.wi(Q(E(R; ¥), V) since Q(E(R; ¥))eA(d).
Therefore vi(wo 2w (UER; ), ¥) = ui(E(R; ). Q.E.D.

Both the values v, () and "1(T:,j(R' ¥)) appear in the recursive
equation (4.,10)., Before developing an upper bound of vi(¢0, it is

necessary to obtain bounds for vi(w) - vi(Tk j(R’ v)y.
. -

Theorem 5.3, If T?:.j*(R(Q*), ¥Y) = Y' is such that
E];:,:MR: v > E::,J*@: v, (5.17)

and if R(l) and R(2) are the possible rewards from the distribution

indexed by 41i*, j* and k* then

0 < vy, (B = vy (¥") < pk¥ IR-R@) |

i*,3* 1-8 ’

1% = 1, 2, +0e N (5.18)
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where vi(w) is defined in equation (4.10).

Proof, Without loss of generality assume that i* = 1, j* = 1 and % = 2,
The 1xXL wvectors ¥ and Vy' differ only with respect to the parameters

of the prior distribution indexed by 1,1 and k* so that

k

By 4R W) = Ef J(R; ¥7), 2 ’j(n- 0 - £,9(Rs V',
all 1, j and k # 1,1 and k* , (5.19)
and
1(R<1), » >t R WD (5.20)

Under the initial assumptions of the proof, the inequalities (5.17) and
(5.20) imply that R(l) > R(2) for the distribution indexed by 1,1 and
k*, From equations (3.7) and (4.7)

N

21 K ET R ) - B R D)
j-

& w - &

o oK% ook* o = gK* (ne oyt .
Pr (B (Rs ¥) = E] (R W) >0

A

k* k* k* k* , k*
q; (¥ - q; (V") Py . ( max {ET ,(R; ¥} - min {E] . (R; V)})
1 1 1,1% ey { 1,3 ve¥ { 1,3 !

k* k*
- R(1) = R(2 = A
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and

q‘{m - qlf(!b') = 0, all k ¥ k*

q?(w) - q:(W') = 0, all i # i* (5.21)

N

k k k k

Sk, 0 = )+ B D pp g >ty (R Y
=1 R

ok
x Vj(nl Ti.j(R’ ‘D*)) "

is= 1’ 2’ oo N. " R = R(l). R(Z). w* - wl w'l

(5.22)

and use the following notation,

k
@, 9 = mx @, W} = sleL 0,

1<k<K,
K ky
ve(n, §') = max - {Si(n-l. ¥} o= 5, -1, ¥ , (5.23)
kY 1-<-k -<-.K 1

where vi(n, V) 1is defined in equation (4.9). The following inequality

is developed using the above notatiom.

ky ky
v,(n, ¥) = v,(m, ¥') = S (a~l, ¥) =S (o1, V)

ky k;
< stmel o -ste ) L Gae
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The inequality (5.18) will be established inductively, When n =1

and assuming kl = k¥,

S0, W - SF@, ¥) = a W - () < 8F a . (5.29)

Next assume kl # k*,

k k k k
1 1 1 1

= 0 3 (5.26)

from equations (5.24), (5.25) and (5.26)

W, 9 -V ¥ £ ap W - ) < A e . (5.2D)

When 1 # 1,

k) Ky
Vi(lt V) - Vi(ls ¥ S Si ©, » - si G, ¥v")

k, ky
= q (W) -q, (W) = 0 . (5.28)

1. ok

Next let n = 2 and assume kl = k¥,

SS5CL, W = S5, ¥ = aE W) - dF
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+ 8 [p‘f’:l [ Y Y R WA, TF R, W)
R .

D AR Vv, TR, )

R
N
k* k* . *
¥ ,zz Py g 2 R Dy, TR, )
* 1 ]
- va, r‘;.jcx.wm] . (5.29)

Ii two vectors wl and wz differ only with respect to the parameters
of the distribution indexed by 1,1 and k* and are such that
* *
EI; 1(R; wl) > Elf-l(R; wz), then, in a manner identical to that used in
] 1]

equation (5.21), it can be shown that
k* k* kk . _k* k* k*
From condition (5.17) and equations (5.27) and (5.30),

v, TP RM, 30) 2 VA, ) 2 v, TR, 8D, ¥y = b ¥

@

*
S TR Wy, T R W) £ v, T RD, W),

k* . * k*
S @ v A TR ) 2 A T @, ) - GaD
R
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N

Using the inequalities of (5.28) and (5.31), and since E p§ 3 -1,
:
i=1 ‘

k=1,2, ... Ki’ i=1, 2, . N, equation (5.29) can be written

*a, w - sa, v = e - o en

+8 pll""l(vl(l, rll‘tl(R(l). ) - v, TTTI(R(Z). w')))

* * *
+ N e TR YO R gl ¢ REDY

-V

L T (R, w'm]

o3

W - + s Al R, W)

- ap (T} (R, ¥

Kk* k*
< Al.l q+8 'Al.l q . (5.32)

Assuming k; ¥ k*, and from equations (5.27) and (5.28),
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kl kl kl kl
S, (L, ) = S, (L, ¥ = q (W) - q (W)

c X k) kg
8 Y ply Syl v, 1R W)
j=1 R
k
- Vj(lo Tl,j(R’ v)))
<8 (W - W)
<g-a%* ' (5.33)

From equations (5.22), (5.32) and (5.33),

v, (2, V) = v (2, ¥) < q) () - a5 )

+BGay (T (R, ©) = @ (1) (R, V)

k*

1.1 (5.3[‘)

A

<A l,lq ’

and when 1 % 1, from equations (5.22) and (5.27),
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k k

v,(2, 9') < 5.0(L, 9) - s, v

vi(2, ¥

k k
a, W) - g, W)

k k k
v6 p plo Yl mwea, iR, W)
§=1 R ' )
1
- Vj(IQ Ti,j(R' v')))

< BlaETW) - af (")
.-
< Al,l q . (5.35)

When | is the vector containing the parameters of the prior distributions,
denote the vector of parameters of the posterior distributions given n
observations of reward R(L) from the distribution indexed by i, j and k
by '1‘1;’3(R(9,)n. Y). An inductive argument using equations (5.27), (5.34)

and (5.35) establishes that

v, ¥ = v (n, ¥ < aF () - af W

+ BT (R(D, 1) = @y (T [ (R(2), ¢')))
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+ 2@ R, W) = & R, ¢
o+ 37T O™, W)
’

- (R v

<Ak*1q(l+6+|32+...+5

n~1
1, )

(5.36)

To obtain the upper bound for vl(w) - vl(w') let n + = in equation (5.36).

ok 1
v = v @ < 2 A1 SR U T Sy vy

h=0

- R (5 5,

P11 I-5

The lower bound of v, (¥) = vi(w') can be established by first

writing the inequality

kl kz
vl(n' lb) - vl(n’ w') = sl (n"l) lp) - Sl (n"']-, I.L,')

k, k,
2 8,7 (-1, ¥) - 5,7 (-1, ¥") . (5.38)

Let n =1 and assume first that kz = k*, then that k2 ¥ k*, Since

qT*(W) - qT*(w') > 0, and from equations (5.25), (5.26) and (5.38),

v, ) - v, ¥) 2 0 . (5.39)
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When n = 2 and assuming that altermative k* 41is not chosea on either

the first or second transition, then from equations (5.28), (5.33) and

(5.38)

v (2, V) = v (2, ¥) 20 . ' (5.40)
An inductive argument can be used to show that

v - v (#") 2 0 . QE.D. (5.41)
Corollary 5.4. If Tiz’j*(R(l*), Eb = §' 1is such that

Ere ga(R5 ) € Epy L (R 9D, (5.42)

and if R(!) and R(2) are the possible rewards from the distribution

indexed by 4i*, j* and k*, then

k* JR(D-R7 ~ ~
Pik, g 'L‘%& =7 v - v, 0 20,

i* - 1. 2. o000 N. (5043)

where vi(W) is defined in equation (4.10).

Proof, The direct substitution of @' for ¢ and a for Y' in the

proof of Theorem 5.3 is possible, Then



63

k “IR(D=-R(2) |

-~ ~ *
0 : Vi*(‘p') - Vi*('l’) < pi*,j* 1_6

V

k* R(1)~-R(2 ~ -
“Pix, 4% u*%‘..‘g"zl < via(®) = v () < 0 . Q.E.D. (5.44)

It is pessible to modify Theorem 5.3 and Corollary 5.4 to obtain a bound

k* [Rglz-RgZ)l
which is less than Pix % 1-8 « Suppose that the conditions of
»

Theorem 5.3 are met and assume, without loss of generality that i* = j* = |

and R(1) > R(2). Let
A a@ = a W - af ")
+ B(af (1) 1 (RA), W) - qf (T] ) (R2), ')
+ 82} ay RWZ, W) - qf (1] R, ¥9)
+ o+ By RS, W)
- afr Ay ®R@T, W),

1

n - 1. 2. s e (5.45)

From equations (5.36) and (5.37)

k* k* h
Vial® = v (W< By g a@) By e d z i
h=n
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Kk* kit g"
Ai*,j* q(n) + Ai*,j* 1T

k* L kx [R(D-R(2)|
1%,4% T TE T Pixgx T 1B ’

< A

n= 1. 2. see ) (5D46)

k* |R$12-RS22!
Therefore the quantity Pix I -8 can be replaced by
14

ak* (n) + k* [R(1) = R(2)| EE— in Theorem 5.3 and Corollary 5.4
i*,3* d pi*oj* 1-8 ¢ Ty e
k

1 j(R. V¥)) will be used to obtain an
»

The bounds for vi(W) - vi(T
upper bound for vi(W). Letting Ti j(R’ y) = ', the results of Theorem
»

5.3 and Corollary 5.4 can be written

L] - k v
.. - k IRSlZ-RSZZI k . 3 k . 1y .

W oo .k IR()=RE2 kK o K ol v,
bvvy = g LBRE@L g < B w v

k

0 < 0
- 1,3

(R; ¥ = 1,

i’j = 1. 2. cee N’ k= 1’ 2. s Ki. R= R(l). R(Z)o (5-47)

Using the notation of (5.47), equation (4.10) can now be written



)

aN
vy = max fdw +s » ok, > & (R W

kafﬁi 1=1 R
x (v, + 6% (R, ¥) Av, (TS (R, YN}
3 1,35 34,55 g

i=1, 2, +o. N, R < R(1), R(2) . (5.48)

Let Q= (u&, Wyp eos wﬁ) = (w) denote a state stationary strategy where

wy is the alternative to be chosen when the system is in state 1, and

define Wi(Q' Y) as

N

w w W

S +5 D Y A LR
ju1 R

v, (2, V)

X (uy (R, V) + 87 (R, W) Av,(T] (R, 1))

et

N
W W . o W ,
- e, S meree & R W
=1 R

w ~ w o
X A"_-](Ti,_-;(R’ w))) + 8B z Pi,3 wj(Q. /) B
§=1
i=1,2, «.s N, R = R(1), R(2) . (5.49)

To express the set of equations of (5.49) in matrix form let

W@, v) = COL [WI(Q. V), WZ(Q' Wy ees WN(Q’ w)] ’
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W
PN,1

p@, » = oo [&w, &w, ... Sw],

where N
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W
Py,2

Py,xN
-

4
W W w \ W
Ly - B0y D 8, (R RS O] R, W)

i=1

x Av (1] (R, V) .
Express the set of equations (5.49) as

w(Q, ¥) = D@, ¥) + 8 P(Q) W(&, V)

R

W(Q, V) - B P(Q) W(R, V)

[1 -8 p(sz)]wm, ¥ = DR, V)

v@, w = [1-82@] o, v .

(5.50)

(5.51)
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Howard (12, p. 82) has shown that [I -8 P(Q)]"1 exists and has non-
negative elements. Note that equation (5.49) 1is of the same functional
form as equation (5.48), and that the set of all state stationary
strategies, denoted by A(), is finite, Calculation of we, v) is
equivalent to Howard's value determination operation, and the policy

improvement routine will determine {* such that
Vi(’”) - max {Vi(now)} - wi(g*. “') b}
SeA ()
i = 1,2, oo N & (5.52)

Letting §* = (mf. WSy eoe mﬁ) = (w*) and the NXN matrix

1-8PEM]Y = ¢ = [c. ], £, 3 =1, 2, eee N, then
] 1,1

N
w
v = Yy ey &
31
N N
* wk
- z 1,3 2 1";‘.h 2 Fa®s V)
j-l h=l R

x (R+ 8 9;°th(R, w)Avh(T;'th(R, )

N

N
< z €4 z p?’:h 2 zt;fh(R; 19)

4=1 h=l R



x (R + B max ey * (R, Vv, (1) ERGERP)))

0< :‘j’h(n,w) <1
N N
_ w* w ,
j=1 h=1 R

x (R + Bi{max 0; Av ('I.‘j h(R’ mhb o,

i = 1,2, ... N, R = R(1), R(2) . (5.53)

Let

By ) = D 25 (R R+ 8 max{05 bv,(Ty (R, WD
R

. K rs .
= R+ 2 (R W) 8 max{s av(rf LRy ],
R

N

dFw - Y kL w o, (5.54)
31

and, for a state stationary strategy £, let

d@, » = coL [FW, W, .. ww]

v@, » = oL [u @0, u,@ 9, ... 9@, o] . (5.55)
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Then, for some {eA(R), the last line of equation (5.53) can be set equal

to ui(Q*, y) and written in matrix fom as
v@s, » = [1-8r@n]™ des, v,
UR%, ¥) = Q@*, ¥) + B P(R*) U(R%, V) , (5.56) -

so that

N N
@, 9 = > o E w8 Y B w @, w
3=1 3=

i = 1,2, e X (5.57)

Because the GE j(R, V) of equation (5.49) are unknown, the strategy %
’
which was defined in equation (5.52) is also unknown. There is, however,
a strategy & such that u.(ﬁ, YY) = max {u «, w)} >u (2%, V)., Let
i i -1
Sed ()

F(Y) = a 1XL vector containing the values -Fﬁ j(WD
1]

for all i, j and k. (5.58)

Since, for fixed k, equation (5.2) is of the same functional form as

equation (5.57), the following equation can be written.

u (b*, ) < w @ W = u, (F)
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N N
k - k
- max (D P E 48D ok, u D)

fofxi j-l j-l
i = 1,2, .00 N, (5.59)

and the set of solutioms {ui(F(lD))} can be obtained by application of

Howard's iterative procedure.

Theorem 5.5. If ui(F(w)) is the solution to equation (5.59), where
F(Y) 1is defined in (5.58) and equation (5.54), and vi(w) is the

solution to equation (4.10), then
v, < w(FW), L=1,2, e N . (5.60)

Proof. From equations (5.53) and (5.59),

N N
wk (g '
AOIEED) g 2 P O e ¥

=1 h=l R

x (R+ 8 max{O; Avh(T?fh(R’ W

A

< (FQW)
i = 1, 2. ese N Q.E.D, (5.61)

Theorems 5.1 and 5.5 establish the following bounds for vi(w),



71

Cu (ER; W) £ v (W) < uw(FQW)) o,
i = 1. 2. ees N o (5.62)

Theorem 5.6, If the state stationary strategy associated with ui(E(R; v))

is

QER; ¥)) = (W, Wyy ovs w) (5.63)
and 1if N

WER W) 2 W3 Y LD W

j=1 R
x u (F(TC (R, ¥))
3 1,37 ’

where k' is the set of all k ¥ W, » k=1, 2, «s¢ K, (5.64)

then

N

W w w

1 z 1 2 ;.
j=1 R

W,

X vy(ry R W) (5.65)

3

Proof. Since it was shown in Theorem 5.5 that vi(w) < ui(F(w)), then

N
W +e D Bk D LR W,
j=1 R
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< qi(w) + 8 z pi )3 221 j(R' Yu (F(Ti j(R "))
j=1

i = 1,2, oo N, ko= 1,2, o0e K (5.66)
Theorem 5.1 showed that vi(w) > ui(E(R; P)). I1f condition (5.64) is
true for all k', then, since k'Uw:l =k, k=1, 2, ... Ky»

v,(¥) 2 u (ER; ) 2 <1i (w) + 8 2 pi Z"ﬁ 1(R %))
. j-l

(F(T . (R, ¥)))

%0,

kl
> G w+s > ok z R v @b Ry W)

=1
!
oy

W = a i +8 2 pi.j z % & DR, w).
3ol

Q.E.D. (5.67)

1f the eonditions of Theorem 5.6 are met the decision maker can
determine the optimal alternative to govern the next transition, If the
conditions are not met it may be desirable to recalculate Avj(\!l') using
the modified bounds for v (w) ( j(R Y)) suggested in equation

(5.46). This will reduce the value of I:J; j(w) which in turn will reduce
[ ]
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ui(F(w)); the change may be enough so that the modified calculations will

meet the conditions of Theorem 5.6,

1f the conditions of Theorem 5.6 can

not be met, it is necessary to revert to a solution which is a variation

of solution by successive approximations.

Theorem 5.7, If vi(n, Y, L) and vi(n, ¥, U) are defined as

Vi(n: Y, L)

vi(O, d’l L)

and

Vi(_nt w' U)

Vi(on v, U)

N
k k
max  {q (V) + 38 P 2y 4(R; W)
1K, ;g; 3 ég 3

x v,(a=l, T (R, ¥, D} ,

3 i,3

1,2, eee

u (E(R, V)

1<k<K, =1 R
x v,@-1, ri’j(k, W, M} ,
1, 2, ees

a (FO)

1. 2. eoe N. R = R(l). R(Z) » (5.68)
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and if n 1is such that

v, %1 = d W +8 21 o z & R 0
j-

X v, (n=1 '1‘ (R, W, L) ,

3 ’ J

and
via, ¥y 1) 2 af (W) +8 2 o z 2 (& W)
3=l
% vy(n=l, o j(R W, v ,
where k' 1is the set of all k ¥ k*, k=1, 2, ... Ki» (5.69)
then
v = g +8 z 2 SR DV (T (R 9D
3=l
(5.70)

Proof., An inductive argument will be used to establish that

Vi(n. !P. un > Vi(w) Z vi(n’ U, L . (5.71)

Theorem 5.1 shows that vi(\b) 2 ui(E(R; ¥)), so that
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W +8 2 o z (R Wu R TS (R, W)
31

< dw +8 321 o 4 z 2R Dvy Ty (R ),

k - 1. 2. [ X N ] N

V

v, % 1) < v
) +8 2 Py z R DL T R, W, 1)

i=1

k k k
< dw+s DBk, D ®s vyl j(R. W,
R

and by iaduction
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k k K Ry v (am :
W) + 8 21 iy D B R Wvianl, TE (R W), 1)
3= R

< diw +8 321 Ps 4 z o g Oy AN ORI

k = 1. 2. eese N

1

vy, ¥ L) < v, () . - 5.7

By a similar argument it is easily shown that

g ) +8 2 Pt 4 z 2 (R Wvi(a-l, Ty (R W), )
- o |

> d€p + 8 121 o 2 £ ® vt R W),

k - 1. 2. oo N

'

'.'i(n, Yy, ) > v (w) . (5.73)

Suppose that there is a n such that condition (5.69) is met. Since
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* =
K* U k' Ky ko= 1, 2, . K,

v > vie, b, 2 qf ) +8 .
g jZl Py O '
- R

(R; V)

x v, (n=1, Tk’jm. ¥, )

> ) +s 2 ok 2 2 R 0 Ty Ry )
< 1, .3
k* N *
v.(y) = '
; CRE 2'1 Z 2 s vy R, W)

Q.E.D. (5.74)
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