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I. INTRODUCTION AND REVIEW OF LITERATURE 

Consider a system which be defined as a stochastic process whose 

realization is a series of transitions between a finite number of states. 

If the probability of transition to another state depends only on the 

current state of the system and not on the series of transitions leading 

to the current state, the process may be called a Markov chain. Suppose 

that a reward is generated immediately after each transition and that the 

value of the reward depends on the state of the system prior to and 

immediately after the transition. For a given number of transitions, the 

expected value of the sum of future rewards will be called the value of 

the system. Also suppose that one or more alternatives are associated 

with each state. Prior to the next transition one of the alternatives 

must be selected; the alternative selected will determine the probability 

of transition to other states and the value of the reward received due to 

the transition. The duty of a decision maker is to choose alternatives 

in a manner which will maximize the value of the system. Bellman (2) 

has called this model a Markov!an decision process. 

A Markovlan decision process can be classified Into discounted and 

non-discounted models. Call B,0<3<I» the discount factor and 

discount the reward received due to the h + 1^^ transition by 6^. 

The value of the discounted model Is the expected value of the sum of 

discounted rewards and, under weak restrictions, will be bounded in the 

infinite transition horizon situation. Two arguments for concentrating 

on the discounted model follow. First is the psychological consideration 

that a reward received immediately has a greater intrinsic value than the 
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sane reward received at a future date, and that the same reward received 

la the infinite future would have no value. Another view might be taken 

by the engineering economist who would equate the discount factor 

to the present worth factor (1 + i) where i is the effective rate 

of interest for the period of time between transitions. In this context 

the value of the discounted model could be labled the present worth of 

future rewards. 

The stochastic process describing the state transitions could be 

other than a Markov process. However, the Markov process is mathematically 

tractable and is often a satisfactory assumption when modeling a physical 

system. Examples are found in many areas including inventory control (8), 

production planning (14), equipment replacement (13) .md Marketing (10). 

Numerous examples are also found in the natural and physical sciences. 

Howard (12) draws on the extensive accumulated knowledge of the 

properties of a Markov process and on work by Bellman (2) to define, with 

admirable simplicity, the Markovian decision process as a dynamic 

programming problem, A major contribution by Howard is the development 

of a procedure to determine the maximum value of a system when the state 

transition horizon is infinite, Manne (15), Wagner (20) and Deman (7) 

formulated Howard's model as a linear programming problem, thus establishing 

an interesting link between dynamic and linear programming. 

Howard assumed the transition probabilities and the rewards to be 

constants. An extension of the Markovian decision process is obtained by 

presuming that the decision maker is uncertain of either the transition 

probabilities or the reward structure. The decision maker faces the dual 

problem of choosing alternatives to maximize the value of the system and 
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using the infozmation gained from observation of past transitions or rewards 

to improve the quality of future decisions, thus suggesting the addition 

of a Bayesian component to the Markovian decision process. Robbins (18), 

in a paper written before Reward's work, raised a question related to this 

problem. Given two statistical distributions and knowing only the class 

of these distributions, what sequential sampling strategy will maximize 

E(S ),S - X, + x_ + ... + X , when x. may be drawn from either 

distribution? Modification of this problem by the assignment of seme prior 

knowledge of the two distributions leads to the "two-armed bandit" problem 

discussed in papers by Bradt, Johnson and Karlln (6) and Feldman (9), and 

a variation of the problem by Box and Hill (5). 

Martin (16) first considered the I4arkovian decision process described 

by Howard, and then assumed the transition probabilities to be random 

variables with uncertain parameters. The parameters are described by prior 

distributions. A strategy will depend on the past history of transitions, 

and the expected value of the sum of future rewards is conditioned on the 

history of transitions. To obtain a computable model Martin required the 

prior distributions to be natural conjugates of the densities of the 

transition probabilities. Raiffa and Schlaifer (17) analyse this topic in 

some detail. Silver (19) considered convenient prior distributions to use 

with reward distributions. Others, including Billingsley (4) and Anderson 

and Goodman (1), have considered statistics associated with Markov chains. 

This thesis is primarily concerned with a Markovian decision process 

with transitions occurring at fixed Intervals of time, state stationary 

probabilities and discounted rewards. It differs from previous models by 

assuming uncertain rewards. The rewards are considered to be random 
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variables from a known class of distributions. The parameters of these 

distributions are described by a set of prior distributions. Chapter II 

considers a general decision model with uncertain rewards tAich places 

few restrictions on the stochastic process involved, A less general 

model is developed by restricting the manner in which transitions and 

rewards are generated. A recursive equation of the value of the system is 

developed. Chapter III applies the results of the preceding chapter to a 

Markovian decision process with uncertain rewards. This allows the 

modification of previous notation to a more economical form. Chapter IV 

examines the Karkovian decision process when the rewards are generated by 

a Bernoulli process with a beta prior density function, A strategy is 

defined and several theorems by Martin (16) concerning the existence and 

uniqueness of the value of the system are given. Chapter V is concerned 

with a method of calculating the value of a system when the state transition 

horizon is infinite. Upper and lower bounds for the valus are developed as 

well as a method of selecting the alternative which should be chosen to 

govern the next transition. 
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II. A DECISION PROCES!: WITH UNC5PTAIN RH-JARDS 

Before proceeding to a discussion of a Markovian decision process 

with uncertain rewards, a more general decision process with uncertain 

rewards will be examined. The reader may find the general model to be 

an interesting topic in its own right, and the results of this chapter 

are of direct use in Chapter III* 

A. A General Decision Model 

Consider a system which must be in one of a finite number of states. 

At discrete intervals of time the system undergoes transitions which 

allow it to change state. Immediately after each transition, the 

decision maker receives a reward; the value of the reward received due to 

the h^^ transition is discounted by 0^S<1. The value of the 

system is defined to be the expected value of the sum of the discounted 

rewards received over a specified number of transitions. The transition 

horizon is the number of transitions remaining before termination and may 

be infinite. Prior to each transition the decision maker selects a 

single course of action from among the alternatives available; the set of 

available alternatives is a function of the current state of the system. 

It is assumed that the decision maker has available to him the record of 

transitions, rewards received and alternatives used. The alternative 

chosen will govern both the transition and the reward received. Future 

transitions and rewards may be dependent on the previous transitions and 

rewards. Uncertainty concerning the reward enters the model fay assuming 

the reward to be a saiiiple from a distribution with an unknown parameter, 

and a prior distribution of the parameter is specified. 
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It Is now necessary to briefly describe a strategy for a decision 

process with uncertain rewards. A more thorougli description for a 

Markovlan decision process with Bernoulli rewards Is found In section C 

of Chapter IV. As mentioned, the decision maker Is assumed to have 

perfect knowledge of past transitions and rewards. When the system Is In 

an Initial state 1^ and n transitions remain before termination, the 

decision maker can specify the alternative to be chosen to govern the 

first transition; call this specification k^(lQ,n). Denote the states 

and rewards by 

1^ • state of the system after the h^ transition, 

" reward received due to the h'^ transition. (2.1) 

A bar superscript signifies a 1 x h vector, e.g. 1^ • (1^,12» ... 1^) 

The alternative chosen to govern the second transition will depend on the 

result of the first transition, ij^ and , whidi was governed by the 

specification k^(lQ,n). Denote the specifications used for the second 

transition by k^ (i^.n). The alternative chosen to govern the h^^ 
il,Rl 0 

(h ̂  n) transition will be a function of all previous transitions and 

rewards. Denote the specifications for the h^ transition by 

•i _ (in."). (2.2) 

The number of specifications with the superscript h is equal to the 

number of possible histories of transitions and rewards leading to the 

transition. For a particular history leading through the first 
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h-1 transitions, specification (2,2) dictates the alternative to be 

chosen to govern the h^^ transition* The collection of specifications 

_ (i-,n), h - 1, 2, ... n, is a strategy DCi^.n). This strategy 

^-1 '^-1 

specifies the alternative to be chosen prior to any transition in the 

horizon for all possible histories leading to that transition. Note that 

the strategy D(iQ,n) can be partitioned into those specifications 

pertaining to the first h transitions and those specifications pertaining 

to the last n-h transitions; in addition, the specifications which 

pertain only to the h^^ transition may be considered. This allows the 

following definitions, 

those specifications of D(iQ,n) pertaining 

to the first h transitions. 

those specifications of DCi^.n) pertaining 

to the final n—h transitions given the 

history 1^, 

those specifications of D(iQ,n) pertaining 

to the h^ transition, (2.3) 

The most generalized decision model considered in this thesis is 

developed using the following additional syobols, 

g • a discount factor, 0 6 < 1 

" a random variable representing the parameter of the 

distribution from which is sampled, (2.4) 

^n-h 

k 

^-1 »\-l 
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Let the following stodiastic triple represent the realization of the 

transition. 

K' n.- \ (2-5) 

Since only i^ and are observable, it is convenient to define 

E,_} . . (2.6) 

When the system is initially in state i^ and strategy = D(iy,n) is 

used, denote the joint likelihood of the sequence {i^, R^}, 

{±2, Rg}, ... {i„. by 

"îT (,,,;i_,D). (2.7) 
1 • 2 * * * * n 

Since the sequence a^^, a^, cannot depend on any member of d" 

other than the members of D^, the marginal likelihood of ag, ... a^ 

may be written 

/  I  I  *a i ,a2 , . . .a^ ( ' ' ' :  ^0 '  
®h+I %+2 

TT (...; ig, D) . (2.8) 
l*2'***n 

The conditional likelihood of given a^, a^, ... a^_^^ depends only 

on those members of which pertain to the choice of alternatives to 
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govern the h^^ transition, and is written 

( s • « Î ig , D ) 

- ,2 (..., i„. D»-*) • 

®h-l 

Analogously, the conditional likelihood of the sequence a^, %4>l* *** % 

given a^, ••• a^^^ depends on the members of D° pertaining to the 

final n~h transitions and is written 

\ ' V i - ' z '  • "  ' o -  i " "  >  
h-1 

(2.10) 

When a system which started in state 1^ has n-h transitions 

remaining until termination, the sequence a^, a^, ... a^ has occurred 

and strategy DCIq* a) " D° is being used, denote the expected value of 

the sum of the remaining n-h discounted rewards by 

w(aj^, a^, ... a^; Iq, D""^) . (2.11) 

Use the dummy variable a^ to denote the lack of history when writing the 

value of the system before the first transition. 

The expected value of the sum of the discounted rewards when the 
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system Is In state Ig and strategy DClg.n) is used is 

w(ao; Iq. D ) / I / \,a^,...a^(^l' h* ^0* 
a, a_ a ®1 ®2 

mR—1 
(Rj + BK^ + ... + B V^®n» *•* daj. (2.12) 

In the following chapters, the desirability of writing equation (2,12) 

in a recursive form will become evident. As the first step in this 

direction, write equation (2.12) in the following manner: 

w(aQÎ IQ, D°) - / Rj • ifl» 

+ S / /*•• / *ai,a2,...a^i*l' ̂ 2' ' ' ̂n' 

'l ^ 

-,ti—2 (Rg + Biy ••• """ ^ R^)da^ ... da^, da^^ 

' f h ' \<°i! 
=1 

+ B / i g ,  nh 

J /••• / 
*2 ®3 

,n-2 
(R2 + 3R3 + ... + e R^)da^ ... da^, da^ da. 
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• / "H 
a. 

\^Cajî Iq, D^)daj 

+ 6 / *1 " (*1: ̂ 0» 

/ /•** /\.a3,...a^^®2'^ 

^ ̂3 ^ 

.,a^/ai;lo,D ) 

X (Rg ̂  6^2 ̂  ••• B *** da2da2 da. 

(2.13) 

The first addend of equation (2.13) is the expected value of the immediate 

reward (the reward received due to the next transition), and the second 

the expected value of the sum of the remaining discounted rewards. The 

value of the last n-1 transitions given 9^. is 

v (a^ ;  ig, I /**' / *a,,a. , . . . a  ^0» 

'z's S ' 

,n—2. 
(Rg + BRg + ... + a" V^®n ••• 4*3dSg 

(2.14) 

Equations (2.12) can now be written in the following recursive form 
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w(ao; Iq. D°) - I Rj io' 

^1 

+ B j  %a (*!' ̂ 3* I>^)w(aj^; 1^, D"~^)daj (2.15) 

-1 ' 

The maximum value of the system and a strategy which will achieve 

that value are of major interest to the decision maker. Now introduced 

are some problems that will be approached in greater detail in the 

following chapters, particularly Chapter IV, 

If ACig, n) is the set of all strategies 0(1^, n) then define 

v(a^; i., n) - sup {w(a ; i , 0(1., n))} (2.16) 
° D(iQ,n)eA(iQ,n) ° ° ° 

In the same sense, v( a^; ig, n-h) will denote the supremum of the 

expected value of the sum of the discounted rewards due to tlie remaining 

n-h transitions, given that the sequence a^^, a^, ... a^ has occurred. 

Equation (2.15) suggests a dynamic orogramming problem and application of 

Bellman's "Principle of Optimality" (3). Represent the alternative chosen 

by the decision maker to govern the h'^ transition by k^, (k^ = 1, 2, ... 

K^), where is the number of alternatives available when the system is 

in state i. In equation (2.15), replace D^, the alternative chosen to 

govern the first transition under strategy Dfig, n), by k^ and write 
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vU^; Ig. n) . t f 4' 

-'-^0 *1 

•*• ® / "a (*!' iq' Ig, n-DdSjj . (2.17) 

When an infinite transition horizon is considered, the parameter n 

will be dropped from the symbols denoting a strategy and the value of the 

system. In this case equation (2.16) will be written 

v(a^; i_) - sup { w(a^; i-, DCi.))} . (2.18) 
° ° D(iQ)eA(ig) " 

Of interest are the conditions under which 

Zim via^; Iq, n) - i^); (2.19) 
n ->• 00 

this will be discussed in Chapter IV. 

B. A Less General Decision Process 

Some restrictions will now be placed on the model of section A of 

this chapter, A particular method of generating the conditional likelihood 

IT* (a^/ a^_^^ ; ig, ) under strategy D(1q» n) will be described and 

^ ' Vi 

denoted. From this conditional likelihood, recursive equations similar 

to (2.15) and (2.17) but for the less general decision process with 
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uncertain rewards will be obtained. 

Consider a process which generates the stochastic triple (i^^ 

in the following manner. The probability of transition from state i^_^ 

to state i^ depends on the past history of states, ij^, i^, ... and 

the alternative diosen to govern the h^^ transition. Denote this by 

«/i^# ^2* *" ̂ -1' ̂0* * (2,20) 

There is a reward distribution associated with each transition from state 

i^ ^ to state i^ and each alternative available when In state 

If N denotes the number of states in the system, there are 

N N 

L • ̂  NK^ - N reward distributions from which can be 

i-1 i-1 

sampled. The particular distribution sampled is indexed by i^_^, i^ and 

k^. Let represent the parameter of the sampled distribution and 

denote the likelihood of by 

"^^-1 * ^h» ®h* S? ' (2.21) 

The decision maker is uncertain of the value of the parameter m^ and 

views it as a random variable. Because there are L distributions from 

which can be sampled, there are also L distributions from which 

m^ can be sampled. These distributions are also indexed by , i^ 

and k^, so that with each reward distribution there is associated a 

distribution of m^ with identical indices. As part of the initial 

conditions the decision maker must specify L independent orior 
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distributions. The distribution from which is sampled is one of the 

set of L prior distributions, the class of which is denoted by 

V '/V' V " 1. 2, ,,, L} . (2.22) 

The specifications of the strategy discussed are dependent on the 

transitions and rewards observed, and the expected value of the system 

will be taken with respect to those observations. It will be necessary 

to compute the conditional distribution of m^ given the observations 

i^^j^ and ; in Bayesian terminology this is the posterior distribution 

of and is denoted by 

, 1^2» ••• ^-1» ^1» ^2* *** ^h' ̂ 0* ) • (2,23) 

Although it is necessary to state the alternatives chosen to govern the 

first h-1 transitions to completely index the reward distributions 

sampled, these alternatives are known when the strategy is specified and 

the history of transitions and rewards is given. The posterior 

distribution (2,23) is obtained by application of Bayes theorem, 

_ <i) (./'I' )V^i''^o*^i'®i*4^ 

Vl- I- *0' h'* > • 

'"h 

*^2 '*"2 '^2^ • • (*h-l/lh-2 'Si-1 'hi-1^ 

*^2 »^2^ * • (^-1 ̂^-2 *^h-l '5i-l '\-l^^°h 
(2.24) 
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Because It Is difficult to devise an economical notation which records 

both the decision state and the dlstrlbutlm sampled, equation (2.24) Is 

somewhat cumbersome. When the Indices of the reward distribution sampled 

are not equal to 1^_^, 1^ and k^, the Indices determining the 

likelihood of that reward Is functionally Independent of Those 

likelihoods In the denominator which are functionally Independent of m^ 

can be placed outside the Integral and will cancel with the corresponding 

likelihoods In the numerator. The fact that the posterior distribution 

of Is altered only by rewards sampled from the reward distribution 

associated with m^ Is clear but somewhat obscured by the notation. 

One Interpretation of the reward structure just described Is that 

the decision maker knows the family of reward distributions but is uncertain 

of at least one of the distribution parameters. Specification of the 

unknown parameter as a random variable reflects the decision makers 

uncertainty. In spite of this uncertainty the decision maker must 

initially estimate ip, a term containing the parameters of the prior 

distributions and Indirectly representing a partial knowledge of the 

parameters of the reward distributions. The decision maker systematically 

updates his initial estimate of ij; by conditioning the distribution of . 

on past observations. In this manner the decision maker bases future 

decisions on both and the observed rewards. But he must not lose 

sight of the fact that the expected value of the system is functionally 

dependent on the initial estimate of 

The joint likelihood (.; i^, D^) of (2.7) can be written to 

^n 

include the additional parameter rp. 



www.manaraa.com

17 

" P^(*;1q» k_ , (•/ ig» K_ » 
a 1 b_ 1 b. 

1 rp) 

* Ajj (•/ Oj^» Iq» t (•/ ®2^» ^! ̂Q» K— » 
^ bo 2 bj 

* (•/ ̂2» ^! ̂Q» K_ a ^2* ®2* ^1* ^0* ^•— * *** 
2 ^1 ^ h 

^n-1* ®n-l* ®a-l' ̂ 0* 
^ ^n-1 

* ^n» ®ii-l» Vl' ̂0* ̂  
® Vl 

* &R ('/ ̂ n» °n* \-l' ̂0* ' (2.25) 

^ ^n-1 

From equation (2.9), the conditional distribution of a^ given is 

*a. ('/ ®h-l* ^0» » 'P) ' ?! ('/ ̂ h-1* ®h-l* ^-1* ̂ 0* \ 
^ \-l ^ \-l 

* \-l» \-l» ̂ 0» 
^ ^h-1 
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h 

'h-1 

* Si* '"h* \-l' ̂0* 1 W . (2.26) 

The assumptions made when describing the less general decision process 

allow equation (2.26) to be written. 

TT (./ ^0» \ f " Pi ('/ ^0* \ ̂ 
^ ^h-1 ^ Vl 

^ ^-1* \* h' ̂  Si» °h* ' 
^ Vl ^ Vl 

(2.27) 

An equation analogous to equation (2.15) but expressing the expected 

value of the sum of discounted rewards for the less general decision 

process when strategy D(iQ,n) is used can now be written 

"<^i - / // vi) 

4 "I "i ° 

X <t> («1/ Rq, io» ̂ 0» ^1* °1* )dRidm^di^ 

^ ^0 ^ ^0 

+ e/ / / ?! di/ ig» ^0* \ ^0* ^0» 

il *1 Ri 1 ^0 ^ ^0 
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X (Ri/lQ, ra; )w(a^; T|»)clR^diHjdi^, (2,28) 
bo 

where ig, Rg and are dumny variables representing the lack of history 

on the first transition. The equation similar to equation (2,17) but for 

the less general decision process is 

"(*o: "o- "• « - ,^ < / / / ''i • Î.: i„. k) 

"'o H -1 "4 

~0' ̂0* ^1* "*1' k)dR^dm^di^ 

+ ̂ j  j  j  ?! ( i l /  ^0'  ^0* (™l/  ^0'  ^0* 

h '"l h 

X 2^ (R^/ig, i^, k)v(a^; ig, n-1, ̂ )dR^dm^di^ } , (2.29) 
1 
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III. A MARKOVIAN DECISION PROCESS WITH UXCERIAIN REWARDS 

The models of the preceding chapter did not restrict the probability 

structure underlying the state transitions. By assuming that the state 

transitions can be described by a stationary Markov chain, the results of 

Chapter II can be modified to specify the characteristics of a Markovian 

decision process with* uncertain rewards. The singular properties of the 

stationary Markov chain, as applied to the decision process being 

considered, are that the conditional probability of transition to state 

i^ given the transition history i^, i^, ... i^_^, is dependent only on 

state i^ ^ and the alternative chosen to govern the h'^ decision; the 

probability is functionally independent of the state history leading to 

ij^ J. Stationarity refers to the functional independence of the transition 

probability and the number of previous transitions. Assuming that the 

state transition probabilities are represented by a stationary Markov 

chain, the probability (2.20) may be written 

Equation (2,28) seated the expected value of the sum of future discounted 

Markovian decision process with uncertain rewards, the value of the system 

(3.1) 

rewards under strategy D(iQ;n) for the less general model. For a 

is N 
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®0' ̂ 0' ^ ^1* °1' ̂  
^ ^0 ^ ^0 

N 

® 2 / / Pi,(il/io: "V %' ̂0= io> "i • « 
' ' ~ 1 bo 1 bQ lj-1 R^ 

X (Ri/iQ, ij, : ̂0» ii')dRj^dm^ 
1 bQ b^ 

(3.2) 

It is possible to write equation (3.2) in a more compact form by 

modifying some of the notation of Chapter II. Rather than specifying the 

state of the system before and after the h^^ transition by i^_^ and 

i^, use, when possible, the indices i and j to refer directly to the 

state of the system. Use the following notation for a Maxkovlan decision 

process. 

V 
p - the probability of transition from state i to 
l»j 

state J when alternative k governs the transition. 

V 
Jt. .(./in) " the likelihood functlos of the reward received due 
i»J 

to transition from state 1 to state J when 

alternative k governs the transition; m is a 

random variable representing the parameter of the 

function and the density of m is indexed by 1, j 

and k. 

If 
$ .(.;#) - the prior density function of m indexed by 1, j 

and k. 
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the posterior density function of m indexed 

by i, j and k and conditional on the obser­

vations Rj, R^, ... ; let i = and 

j - (3.3) 

Reduce the notation required when denoting the posterior distribution 

of m by letting 

Vl- S.-2! ̂ 0' « • • (3-4) 

This notation may be taken to imply that the posterior distribution of m 

Is of the same family as the prior distribution, with denoting the 

value of the parameters of the prior distributions updated through the 

(h-l)*"^ transition. Chapter IV considers a reward structure of this type. 

The author Is Indebted to J. J. Martin whose book (16) suggested the 

following notation. Let T . (R,(j;) denote the parameters of the posterior 

distributions given one additional reward observation R sampled from the 

distribution Indexed by 1, j and k, so that 

*7 ,( . /R; ^  - 07 . ( . ;  C .(R,i |;))  .  

m 

(3.5) 

The conditional likelihood of a^ given for the less general 

decision model was specified in equation (2.27), For the Markovlan 
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decision process, the analogous equation is 

kg 

IT (./ ig, k_ , W - (*/=') *l,j ('* * ̂ ' 

^ Vl 

(3.6) 

Before rewriting equation (3.2), consider the first addend on the 

right hand side of that equation, whidi represents the expected value of 

the reward received due to the next transition. When the system is in 

state i prior to the h^ transition, denote the expected value of 

by 

q^(V^) - 2 / / * " *l^j(*: a%^^(R/m)dRdm . (3.7) 

j"l m R 

The value of the sum of the remaining n-h discounted rewards Is now a 

function of the current state of the system and the updated parameters of 

the prior distributions. When 1^ « 1, let 

w( a. ; i_, it>) - w (D^"^, . (3.8) 

Rewrite equation (3.2) using the notation developed in this chapter. 

k^ k^ k^ 
b FF F 

WJ(d", \|») - q^ °(V,) +6 ^ (n; V) (R/o) 

j"l m R 
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T, °(R, i;,))dRdm (3.9) 
J ]"* J 

The dynamic programming formulation of the Harkovlan decision process with 

uncertain rewards Is 

N 

v.(n, ift) " max { q&V) + S V f f P, , <(%; 
1 Jtl J / 

X A^^j(R/ffl)Vj(n-l, TijCR» V))dadm } , (3.10) 

where v^(n, ij;) is the supreaam of the value of the remaining n 

transitions when the system is state 1. 
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IV. Â MABKOVIÂN DECISION PROCESS 

WITH UNCERTAIN BERNOULLI REWARDS 

This chapter will analyse a Markovian decision process with uncertain 

rewards and with a specific reward structure. First a particular reward 

likelihood and prior distribution will be specified, and then the results 

of Chapter III will be used to obtain equations describing a Markovian 

decision process with Bernoulli rewards. A strategy for the case \^en 

the number of possible rewards is finite will then be described in detail. 

Finally the existence and uniqueness of , an optimal strategy and 

bounds of the function [v^(n,# - v^(T{))j will be considered. 

A. A Discrete Reward Structure 

The reward structure to be considered assumes that rewards are 

generated by a Bernoulli process. The parameter of this process is 

dcertain; this uncertainty will be described by assuming the parameter 

to be a random variable defined by a prior distribution. Describe the 

likelihood of the reward sampled from the distribution Indexed by 1, j 

and k by 

^i 

0 ̂  m ̂  1, R • R(l), R(2), x • 1 when R • R(l) 

X " 0 when R • R(2) . (4.1) 

The parameter m in (4.1) is a random variable to which a prior 

distribution also indexed by 1, j and k must be assigned. Two criteria 
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should be considered when selecting a prior distribution. First, the 

distribution must appeal to the model builder's intuition and seem a 

reasonable way in which to describe m. The second criterion is more 

objective. For the model to be useful, the posterior distribution of m 

must be calculable. Raiffa and Schlaifer (17) have extensively examined 

the class of prior distributions which are natural conjugates of the 

process (i.e. reward) distribution. The natural conjugate prior density 

function has the characteristic that the posterior density is of the same 

family as the prior density, and that the parameters of the posterior 

density are often simple functions of the parameters of the prior density. 

If the model builder's intuition allows him to reduce the set of candidates 

for the prior distribution to the natural conjugate prior, he will achieve 

a large return in terms of computability. 

When rewards are generated by the Bernoulli process described in 

(4.1), the likelihood function of the sample R^, ••• from the 

distribution indexed by i, j and k is 

1-x 
^ • m®(l - m)^~®; n m (1 - m) 

1-1 

t 

= - S "!• - 1 when R^ • R(l) 

x^ - 0 when R^ - R(2) . 
i-1 (4.2) 

The natural conjugate prior density of the likelihood (4.1) is the beta 

distribution. This is verified by observing that the density function of 

the prior distribution varies as the likelihood function of the rewards. 
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s, t) a - g.)t-s-1 (4.3) 

When the beta distribution is chosen to describe m, 

J(m; s, t) - g(g ^c_g) . (4.4) 

Because the natural conjugate prior distribution has been selected, the 

posterior distribution is also a beta distribution with parameters as 

shown below. 

t' 

m® ^(l-m)^"®"^ n m^(l-m) 

i}>^ j(n/Rj^, Rg» ••• Sj t) " 2 

J in' ^ ( 1-m) ̂ ® ^ n ( 1-m) dm 

0 h-1 

1 (1 - M)T+T'-(S+S*).L 
S(s+s', t+t'-(a+s*)) 

- s + s', t + t') , 

t' 

• - ̂  x^, " 1 when R « R(l) 

" 0 when R • R(2) . (4.5) 

s 

h"l 

As Indicated, the parameters of the posterior are a simple function of the 

parameters of the prior, the total number of observations and the number 

of those observations equal R(l). 
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The marginal distribution of :i is 

1 

s,t) - j m*(l-m)^"*m®'^(l-m)'~®"^ dm 

0 

( a )= ( 2:2 )l-« ; 

X • 1 when R • R(l) 

X - 0 when R " R(2) » (4.6) 

where s and t are the parameters of the prior distribution indexed by 

i, j and k. The expected value of R is 

.(R; s,t) - y R ilj ,(R; s.t) - R(l) f + R(2) ̂  . (4.7) 

R 

N 

There are L • N ^ prior distributions, and the parameters 

1-1 

s and t must be specified for each distribution. The symbol ip denotes 

a 1 X L vector containing the parameters of all prior distributions. The 

decision maker must estimate s and t for each of these distributions 

in the manner which best reflects any prior Intelligence about the 

corresponding reward distribution. One point of view is that the ratio 

s/t should be selected to correspond with the decision maker's estimate 

of the expected value of R, and that the magnitude of t will reflect 

his certainty of the estimate of the expected value. A large value of t 

indicates a great deal of confidence in that estimate, while a small value 
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of C would allow a more rapid relative change in the posterior parameters 

and indicate less confidence in the initial estimate of the expected value 

of R. 

B. The Expected Value of the Sum of Discounted Rewards 

Equation (3,9) defined, in recursive form, the expected value of the 

sum of discounted rewards for the Markovian decision process with uncertain 

rewards. Using the reward likelihood (4.1), the prior distribution (4.4) 

and the notation of (6.6), the value of the Markovian decision process with 

uncertain Bernoulli rewards under the strategy D(i, n) can now be written 

"i N _ >4 i 
Wj_(D", ti-) - q °(*) + 6 2 Pi,j 2 *l,j (R, #). 

j-1 ' R 

1 - 1, 2, ... N, R - R(l), R(2) . (4.8) 

Analogously, equation (3.10) Is now 

v,(n, ij;) - max { q^('i') 
1 < k < 

N 

j-1 R 

i - 1, 2, ... N, R - R(l), R(2) . (4.9) 

For an infinite transition horizon, equation (4.9) will be written 
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N 

-

1 Ik 1 *1 
max 

j-I R 

1 - 1, 2, ... N, R - R(l), R(2) . (4.10) 

The remainder of this thesis will focus on the properties and solution of 

equation (4.10). 

A strategy for the decision process described in the previous section 

will now be described. For an n transition horizon, a sampling strategy 

will be constructed by first specifying a strategy for a transition horizon 

of one, amending that to obtain a strategy for a horizon of two and 

proceeding sequentially to the n transitioi horizon strategy. Since 

there are a finite number of states and rewards, the number of strategies 

will be finite if the transition horizon is finite. 

If the system is in state 1 and the alternative to govern the next 

transition has been chosen, the decision maker can select a policy vector 

which will specify the alternative to be chosen after the next transition, 

give the outcome of the next transition and the reward received due to that 

transition. Because there are 2N possible outcomes of a transition and a 

reward, the policy vector la a 1 * 2N vector denoted by 

C. A Strategy for a Markovlan Decision Process 

with Incertain Bernoulli Rewards 

a " (k 1,1» ̂ 1,2* ̂ 2,1» ̂ 2,2» ••• ̂ N,!* ̂ N,2^ ' (4.11) 
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Element k . = 1,2, 3, ... K denotes the alternative to be chosen 
J »•"' J 

if the next transition is to state j and the reward received due to the 

transition is R = R(&), & - 1, 2. Let ̂  be the finite set of the 

2 J » H K, policy vectors a. Index the policy vectors by the integers 
i-1 ^ 

0 through J - 1, 

• (OQ* » ^2* (4,12) 

Assume that the system is initially in state i^ and that alternative 

k, k " (1, 2, 3, ... K.. ), has been chosen to govern the first transition. 
0 

Before the first transition the decision maker can specify a policy vector 

d(l) * G , a, , " 0, 1, 2, ... J - 1 , which specifies the alternative 
"l,l 

2 
to be chosen to govern the second transition. Let D • D(2, ig, k, d(l)), 

be called a strategy for a horizon of two transitions. 

A strategy for a horizon of three transitions can be defined by 

2 stating D and specifying the 2N policy vectors which will dictate the 

alternative chosen to govern the third transition. There are 2N possible 

state-reward histories leading from 1^ to the outcome of the first 

transition. These may be denoted by 

^ »  • • •  ^  

- 1, 2, (4.13) 

where 1^ Is the state of the system after the first transition and 
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completes the description of the observed reward. Because i^ and l'­

are known, the reward received due to the first transition is knoxvn to 

have been a sample from the reward distribution indexed by i^, i^ and k. 

Tliere must be a policy vector specified for each possible state-reward 

history. The followinf function of is a 2N-ar>' number which 

will be used to order the state-reward histories. 

zCxgXli# ^ , 

y(i^, = 2(ij - 1) + - 1 , i - 1, 2, 3, ... N' 

i = 1, 2 . (4.14) 

Associated with each state-reward history is the unique number 

Order the state-reward histories so that x^CiJ^, 2-p < 2^') < 

XaC^J", S.j'*) < ... when z(%2(^l' ^ zCx^Ci^', 2j')) < 

zCx^Cij", ... and index the histories with the digits 1 through 

2X, assigning the history associated with the smallest value of 

zCx^Ci^, the integer 1, the next smallest the Integer 2 etc. . 

The state-reward histories from i^ through the first transition may now 

be denoted i» ^2 2« *2 3* ^2 2N ^^ere the first subscript indicates 

a history through the first transition and the second subscript refers to 

the ordering index just described. Denote the policy vector selected by 

2 the decision maker when strategy D is used and state reward history 

2 X., is observed by y(2, g, D ) = c ,a-= 0, 1, 2, J - 1 . 
2 g %2,g 

Define the 1 x 2N vector Y( 2 )  " ( o  ,  a ,  a  ,  . . .  a ) .  
2,1 2,2 2,3 2,2\ 



www.manaraa.com

33 

Lengthen this vector by attaching the element d(l) to the front of Y(2) 

and denote the result by 

d(2) - (a , a , a , ... o ) . (4.15) 
*1,1 °2,1 *2,2 *2,2N 

3 A strategy D for a horizon of three transitions is 

- D(3, IQ. k, d(2)) . (4.16) 

3 The strategy D explicitly states the alternative to be chosen to govern 

the first, second and third transitions as a functlcm of the observed 

transitions and rewards. 

In general, to construct a strategy given ^ it is necessary 

to specify (2N)^"^ additimal policy vectors since that is the number of 

possible state-reward histories 3^ .(1^^, Ij, Ag* ••• ̂ -2* \-2^ 

leading from IQ through the (h-2)^^ transition. As before, the state-

reward histories can be assigned a 2N-ary number. 

h-2 

^^*h-l^^l' ̂ 1* ^2* ^2* ••• ̂ 1-2» *h-2)) • ̂  * 
n"l 

yw,. V + t-i. 2, ...N 
i - 1, 2 . (4.17) 

Order the histories as before, so that 

Xh.i(i[. I-29 ^2* ••• ̂ -2* ̂ -2^ 
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<• V F1'* 2.** < * * 2,1» IF £*» \ 

*h-l^ 1 • » ^2 • 2 * ^-2* h-2'' 

vrtien ^1» ^2* ^2* "** Hi-Z* ^h-2^^ 

^ M * ^2*' ̂ 2 * *** ^-2* * 

and index the histories with the integers 1 through (2N)^ The 

policy vector to be selected prior to the (h-1)transition, when the 

history through the (h-2) ̂  transition identified by the ordering 

index g has been observed, is y (h-1, g, " G « Let the 
Vi,g 

1 X (2N)^'^ vector y (h-1) - (a , a , ... o_ , ,) 
Vl,l Vl.2 Vl,(2N)^ 2 

specify the policy vectors selected prior to the (h-1)^ transition 

and which in turn will dictate the alternative to be chosen to govern the 

h^ transition. Combine y (h-1) and d(h-2) to obtain d(h-l). 

d(h.l) - ... ... • 

(4.18) 

The symbol d(h-l) denotes a 1 x M(h-l) vector where 

M(0) - 0 

h 

M(h) - ^ (2N)®"^; h - 1, 2, 3, ... . (4.19) 

g-i 

The h transition horizon strategy is 
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- D(h. IQ, k. d(h-l)) . (4.20) 

Call 6(1^, n) the set of all n transition strategies when the 

system is initially in state ig. When n is finite, the total number 

of unique strategies contained in the set ACi^, n) is finite and equal 

Some results from Bayesian Decision Problems and itoriçov Chains by 

J. J. Martin (16) are very useful at this point. A model which Martin 

developed and the model of this chapter have certain similarities, and 

several of his theorems, with only slight modifications, apply to a 

Markovian decision process with uncertain Bernoulli rewards. In this 

spirit, four theorems based on Martin (16, p. 38-44) follow. The proofs 

given are from Martin but with the required changes. 

Theorem 4.1. Let w^(D, \lf) be the expected value of the sum of discounted 

rewards when the system is in state i, strategy D is used and the 

transition horizon is infinite. Let 

S -
0 

D. The Existence and Uniqueness of v^(i^) 

sup {w (D, ip)} . 
DeA(i) 1 

(4.21) 

Then there is a strategy D*eA(l) such that 

- Wj^(D*, IP) . (4.22) 
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Proof. First it will be shown that is bounded. Denote the 

possible rewards from the distribution indexed by 1, j and k by 

,(&), Z • 1, 2. If R* • max {r^ ,(&)} , then the maximum \ 
i,j,k,A 

of the sum of discounted rewards which can be received is 

^ R* • • (4.23) 

h-1 

Letting 6 denote the set of all d In the strategy D • D(l, k, d), 

equation (4.21) can be written 

V (i|;) - max sup {w (k, d, i l>)}  (4.24) 
^ 1 < k < K. deô 

To each deâ let there correspond the J-ary number 

.h-1 CO (2N) 
,-(M(h-l)+j) 

- % 2 J 
h"l j-1 

(4.25) 

where M(h) is defined in equation (4.19). For any de6, 0 _< a(d) 1, 

and in addition equation (4,25) is a one-to-one mapping of the set 6 

onto the closed interval (o,l] . For fixed 1 and k let g^(a, i j / )  be 

a function defined on ^,l] by 

g^(a, ip) - w^(k, d, If*) , (4.26) 

Then equation (4.24) can be written 
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V (0 - max sup {g^Xa, $)} (4.27) 
l^k<Kj 0 _< a  ̂  1 

To show that for fixed k, g^(a, i|)) is continuous in a let 

R** m max {{R^ ,(&){}. r*« » ndn {| ,(&)|} . (4.28) 

For a given C choose a positive integer n such that 

g*U ( ( (4.29) 

For a fixed a e [o, l] let a' be any number such that 0 < a' < 1 and 

(a - a'I < j"^. If a " a(d) and a' • a'(d') then 

a - o' , h - 1, 2, ... (v - 1) 
n,g n.g 2 

g - 1, 2, ... (2N)^^ . (4.30) 

Since both strategies are identical through the first v transitions, 

OO 

|gl(a, *) - g^(a', *)| < ^ S^-^(R**-r**) 

h-v+l 

- ) < Ç . (4.31) 

So g^(a, }p) 

and for each 

is a continuous function of a on the compact set [o, l] 

k there exists an a* e [o, l] such that 
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^ ^ 0 < a < 1 1 

Letting d*(k) denote the inverse image of a* = a*(d*), 

V (ip) = max {v (k, d*(k), ijj)} , (4.33) 
1 < k < K, 

and there exists a strategy D* = D*(i, k*, d*(k*)) such that 

v^( ip) » v^(U*, ip) . QKD. (4,34) 

Theorem 4.2, If the set of functions {v^(n, ̂ )} is defined by equation 

(4.9) then the limits 

£iin v (n, Tp) » v (if;), i - 1, 2, ... N (4.35) 
n 00 

exist and {v^(t|;)} is a set of solutions to equation (4.10). 

Proof. It will be established inductively that for arbitrary positive 

integers n and m, 

|v^(n, ̂ ) - v^(m, i|))j £ R** , 

i " 1, 2, ... N, n, m = 0, 1, 2, ... , (4.36) 

where R** = max {[ (2)|}. Because 0 ̂  B < 1 it follows by the 
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Cauchy criterion that £im v (n, il>) exists for i - 1, 2, ... N. By 
n -»• « 

allowing n to go to <» in equation (4.9)» it follows that the limiting 

functions satisfy equation (4.10). Let 

N 

S^(v» n. - q^(# + Y PjL.j S W) 

j-1 ' & 

(4.37) 

To establish equation (4.32) let 

v.(n, W - S^(v, n-1, T|)) « max ts^(v, n-1, if;)} , 
^  ^  l < k < K .  

V. (in, y*) » S^(v, m-l, ij>) • max {Sj(v, m-1, ip)} , 
^  ^  l < k < K .  

then 

v^(n, W - v^(o. IF/) < s"(v, n-1, IP) - S®(v, m-l, *) , 

v^(n, ip) - v^(m, ip) 2 S^(V; n-1, ip) - S^(v, n-1, ip) . (4.38) 

Let k* index the larger of (S^(v, n-1, # - S^(v, m-l, i/;) | 

and |S^(v, n-1, ii>) - S^(v, m-l, ij;) [ . Then 

[v^Cn, \Ij) - v^(m, # | £ |S^*(v, n-1, ip) - S^*(v, m-l, if;) | 

N 

2 'ti 1 m 
j-1 R 
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- VjCm-l, $))! , 

i • 1, 2, ... N, n, m - 0, I, 2, ... (4.39) 

Assuming that v^(0, i»l, 2, . .= N, then 

*)| i ]> 8^"^ R** - R** . (4.40) 

h-1 

Therefore, assuming that n 2 

1-6*"* I v^(n-m, i{>) 1 £ YZg R** . (4.41) 

An inductive argument using equations (4.39) and (4.41) shows that 

|v^(n. 111) - v^(m. If;) | ̂ » (4.42) 

and a similar argument for the case m > n yields equation (4.36). Q.E.D. 

Proofs of the remaining theorems in this section will not be given. 

Modifications of the proofs to Theorems 4.1 and 4.2 are typical of those 

necessary for the remaining theorems, and the required proofs follow almost 

directly from Martin. 

Theorem 4.3. There exists a unique set of functions v^(ip) which 

satisfies the set of equations 
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V^(W - 2 Pi.j ̂  
1 -k ̂  j-1 R 

i - 1, 2, ... N , R - R(l), R(2) . (4.43) 

Theorem 4.4. If } is the unique bounded set of functions which 

v 
satisfy equation (4.10) and if Z . (R; i|j) is a continuous function of 

^ fJ 

jj /  (k « 1, 2, ... K^; i, j • 1, 2, ... N), then v^(ii^) is a continuous 

function of # (i « 1, 2, ... N). 

It has now been shown that the set of solutions {v^(^)} to equation 

(4.10) exist and are unique, and that there is an optinal strategy D* 

which will achieve {v^(^)}. The decision maker would like a method of 

determining, or at least approximating, the set of solutions {v^(^)}. 

A more immediate problem facing the decision maker is the choice of the 

alternative to govern the next transition. Before proceeding to Chapter V 

and a discussion of these problems, three additional theorems from Bavesian 

Decision Problems and Markov Chains (16, p. 44-50), but modified to apply 

to the model of this chapter, will be stated. 

Martin has developed a bound for the error function |e(n, i^') | 

= Iv^(i/j) - v^(n, ̂ )|. The bound converges monotonically to zero, and n 

can be chosen such that the resulting error bound is small enough to make 

v^(n, 4i) a satisfactory approximation to v^(^). The following theoreins 

concern this bound. 

Theorem 4,5. The value v^(ip) has the bounds 

& i ^ % ' (4.44) 
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vrtiere r* « max .(&)} and r* • mln {R^ , 

Theorem 4.6. Let v^(n, ̂ ), as defined in equation (4,9), be a sequence 

Ch 
of successive approximations. Tlien tlie error term of the n approxi­

mation has the bound 

|e(n, # I < S"(max { ; "Jig /) • (4.45) 

Theorem 4.7. Let the generalized state (i» ifi) be fixed and let 

X(i, lii)eA(i') denote the set of optimal strategies for the Markovian 

decision process of equation (4.10). If D*(l, n) is an optimal strategy 

for the problem defined by equation (4.9) then, as n D*(l, n) 

ultimately lies in A(i, lit). 
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V. CALCULATION OF THE SET OF SOLUTIONS {v^(i{i)} 

TO THii MAKKOViAN DECISION PROCESS WITH UNCERTAIN BERNOULLI REWARDS 

Theorem 4,5 provides a bound for the error term {e(n, ip) [ • 

- v^(n, t^) I which is a monotonically decreasing function of n. 

The value v^(i|;) of equation (4.10) can be approximated by calculating 

Vj(n, W of equation (4.9), with n chosen large enough to reduce the 

bound of the error term to a magnitude acceptable to the decision maker. 

The practicality of this method of solution is seriously limited because 

of the excessive time required to calculate v^(n, W. Consider the 

simple "2x2" problem in which the system consists of two states (N-2), 

and there are two alternatives available in each state (K^ • 2, i • 1, 2). 

For fixed k the equation describing v^(n, 4') contains four different 

values of v (n-l> T. _(R, ̂ )) and since k « (1,2), there are a total 
J 1 » J 

of eight values of v (n-1, T. , (k, which must be calculated. Each 

of these in turn generates eight additional values until v (1, T. .(R, ̂ )), 
J ^>3 

which requires only two calculations, is reached. Solution of v^(n, # 

for the "2x2" case therefore requires 8^ ^-2 separate calculations. 

The bound of (e(n, if/) ( is a function of the discount factor, 6. 

If 6 is the present worth factor for a compounding period of one, then 

3 " 1/(1 + 1) where i is the effective rate of interest. A typical 

rate of interest might be 10% per year, so that 6 = 0.9. Should the time 

interval between transitions be less than one year, S will be greater 

than 0.9 if the annual rate of interest of 10% is to be maintained. 

Assuming 6 • 0,9 to be typical, then converges rather slowly. For 

example, ten iterations would reduce the initial error bound by a factor 
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of approximately 0,35, while the number of separate calculations for the 

"2x2" case necessary to calculate v^(10, 4i) would be approximately 

2.7 X 10®, These considerations may create some concern about the 

practicability of applying the Markovian decision process with uncertain 

Bernoulli rewards to a real world problem unless a better method of 

solution can be developed. The purpose of this chapter is to develop 

bounds for which are relatively quick to calculate, and to develop 

a method of determining the alternative which, for a fixed ip, should be 

chosen to govern the next transition. 

The Markovian decision process with uncertain Bernoulli rewards is 

conceptually similar to the discounted model discussed by Howard (12, 

p. 76-91), except that Howard assumed the rewards to be known constants. 

Let 

Ic . - the reward received due to transition from state i 
i.J 

to state J when alternative k is chosen to govern 

the transition. 

a IxL vector containing the rewards A. . for all 
J 

i, j and k. (3,1) 

When the state transition horizon is infinite and the system is in state i, 

Howard has defined u^(4>) as the expected value of the sum of future 

discounted rewards under an optimal strategy, where 

N N 

--i j-1 j-1 

i - 1, 2, N, (5,2) 
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and has showix that the set of solutions {u^(A)} exist, /in important 

contribution by Howard (12, p. 76-87) was the development of the value 

determination operation and the policy improvement routine, which together 

form an iterative method of calculating the set of solutions {u^(A)} 

to equation (5.2). From equation (5.2) it is clear that the alternative 

to be chosen to govern the next transition depends only on i, the 

current state of the system. Denote the state stationary strategy whicli 

yields {u^(A)} by Î2(A) - (w^, ... w^), where is the alternative 

to be chosen when the system is in state i. With reference to section C 

of Chapter IV, the decision maker always chooses the same policy vector 

and ignores past history. 

Consider another similar Markovian decision process; suppose that the 

rewards are random variables whose distributions are known. Let 

fJ J(•» ^) • the density function of the reward received 
^ » J 

due to transition from state i to state j 

when alternative k '..s chosen to govern the 

transition. 

A = a IxL vector containing the parameters of 

f^ .(.; X) for all i, j and k. (5.3) 

Then the following equation, which is analogous to equations (4.10) and 

(5.2), can be written 

N 

X (A) - max {V f  R (R ;  X)dR 

j.i 
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N 

+ B ^ ̂Ï.J / A)Xj(A)dR} , 

j-1 ' R 

i - 1, 2, ... N . (5.4) 

Denote the expected value of a reward by 

j(R) -  f  R f^ j(R; X)dR 
R 

and let 

E(R^) = a ixL vector containing the expected values 

,(R) for all i, j and k. (5.5) 
J 

It will be shown that the set of solutions {x^(A)} - {u^(E(R^))} , 

Since x^(A) is a constant, equation (5.4) can be written 

N 

X. (A) - max {V p^ f  R  (R ;  X )dR 
jtl R 

N 

+ 6 I 4.j '3<« / 

J-1 R 

N N 

max 

l^i^i j.l 

i - 1, 2, ... N . (5.6) 
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Substitute j(R) for ^ in equation (5.2). Then u^(E(R^)) of 

equation (5.2) is of the same functional form as x^(A) of equation (5.6) 

so that u^(E(R^)) " x^(A), i - 1, 2, ... N. Therefore the Markovian 

decision model described by (5.3) and equation (5.4) is equivalent to the 

discounted model discussed by Howard. 

The preceding discussion leads to a method of obtaining a lower bound 

for v^(ij;) which, in most situations, will be much larger than the lower 

k 
bound given in Theorem 4.5. The expected value E. .(R; # was defined 

J 

in equation (4.7). Let 

E(R; ;(f) " a 1*L vector containing the values E, ,(R; # 

for all i, j and k. (5.7) 

The state stationary strategy 0(E(R; i|i)) is the optimal strategy 

associated with the set of solutions {u^(E(R; #))} to equation (5.2). 

Theorem 5.1. The value of a Markovian decision process with uncertain 

Bernoulli rewards, given that the state transition horizon is infinite 

and that the state stationary strategy 0(E(R; ̂ )) is used, is, from 

equation (4.8) 

N 
«1 V "i V "i 

w^(«(E(R;#), # " +3 2 Pl,j 2L *i,j(*: 
j-1 R 

X Wj(n(E(R; *)), T^ijCR, m , 

1 - 1, 2, ... N, R - R(l), R(2) . (5.8) 
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If u^(E(R; ijj)) is the solution to equation (5.2), then w^(fl(E(R; ̂ ))) 

= u^(E(R; ̂ )), i - 1, 2, ... N. 

Proof. To simplify notation let 0(E(R; ij;)) » (w^, ... œ,^) " (w) 

It will be established inductively that 

N 

w. (n(R; 40),  # 
0 "Vh 

ij^«l 

+ P 

N 

ij-l 

N 
w 

lo'ii S Pii.ig Gil.iz (*2:44 

+ 8 
I 
I2-I 

N 

I 
I3.1 

+ ... 

Xq - 1, 2, ... N. (5.9) 

By letting E? (R; tjj) » . it is clear from equation (5.9) that 

w^(U(E(R; ̂ )), ip) = u^(E(R; ^)). 

Let 0^(E(R; ip) ) denote a n state transition horizon even though 

the state stationary strategy is independent of the number of transitions. 

Then equation (4.8) can be used to establish equation (5.9). 
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w. (n^(E(R; *)), # 
^0 

N 

- 1 2 "I « 
VI 

N 

1 
H'^ 

w. («^(E(R; m» 
^0 

N 

\ 'Vh ? "l *10.11^"^' 
N 

® X \-H ? 
ll-l 

N 

iz-i 

w 
l,,i 

1*  2  

X E 1 1 i (*1' *)) 
1* 2 ^0* 1 

It Is necessary co show that 

1  w 

N 

2 Pj,h ^j,h^^» 
h"l 

(5.10) 

N 

" I "".h Sj.hC'z: •> 
h"l 

(5.11) 

Equation (5,11) can be written 

1  w 

N 

2 'j.h ^ F H 
Rg » h»l 

(5.127 
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where <j>^ 0 Is the posterior distribution of m given and 

is determined by the application of Bayes theorem as shewn in equation 

(4.5). As mentioned in the discussion following equation (2.24), the 

posterior distribution of m differs from the prior distribution only 

when the reward observed is sampled from the distribution with indices 

identical to those of the prior distribution of m. If 1 j then 

^(m/R^; ij;) • since the likelihood of R^ is ^(R; 4»), 

When i  ¥  j  equation (5.12) can be written 

N 

% "S'.h 2 / " 
R2 m h-1 

-I 
R, 

N 

h"l 
i.h 

N 

(5.13) 

h"l 

For the case 1 - j and h i* j the preceding argument Is valid, and when 

1 - j - h, that element of equation (5.12) is 

Rj Rj « 
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t RjCi) 
a 
t+1 

- ^.i[f Rjd) + •— «2 (2) 
W 

(5.14) 

Using the results of equations (5.13) and (5.14), the second equation of 

(5.10) can be written 

+ 6 

N 

W). 4») - I 
ii-i 

N N 
u 

2 \'H 

1 

ii-i 
\'H 

1 

N 

w). ip) m 
I 
4-1 

N 

*1 

*) 

ii-i 

N 

ll-l 

X E 1 1 ^i i (^1, *)) 

® E %.l2 I 
*2 

*)) 
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N 

W)) 

'r' 

N 

1 ,̂.1^1' « 
ii-i 

+ B 

N 

%.h 
±1-1 

N 

^2-' 

N 

+ ® 1 \.T,<H-' « I %.l, 
R, io-1 ^ 

N 

''2-^3 

« Ej i (PL; 1? , (Rj. m 
^2* 3 0' 1 

N 

" %.h *' 
ii-i 

N 

+ 8 I. %.i, 
ii-i 

N 

+ g 

VI 

N 

1 \.I, <,.I/«2: * 

1 

^2-' 

N 

l,-! 

(5.15) 

An inductive argument using equations (5.13), (5.14) and (5.15) establishes 
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equation (5.9) for the infinite state transition case, Q.E.D. 

A theorem concerning the lower bound of v^(i|>) is now stated. 

Theorem 5.2. Let u^(E(R; *}>)) be the solution to equation (5,2). Then 

v^(t^), the solution to equation (4.10), has the lower bound 

u^CECR; m < , 

1-1,2, .., N . (5.16) 

Proof, It was shown in Theorem 5,1 that u^(E(R; i^)) - w^(0(E(R; ip) p ij>) ; 

by equation (2,18) v^(tp) _> w^(J2(E(R; (ff), (ff) since fi(E(R; i l f ) )£û( l ) .  

Therefore v^(<i/) ̂  w^(î2(E(R; tj;), i^;) • u^(E(R; #)). Q.E.D. 

Both the values v (ip) and v. (T, .(R, if;)) appear in the recursive 
x 1 xj3 

equation (4.10), Before developing an upper bound of v^(if;) , it is 

necessary to obtain bounds for v^((|>) - v^(T^ j(R, ̂ 0). 

Theorem 5.3. If T^^* .+(R(A*) , ̂ ) « ^* is such that 

W > r> . (3.17) 

and if R(l) and R(2) are the possible rewards from the distribution 

Indexed by i*, j* and k* then 

0 < V^.(« - "'"ly I 

1* - 1, 2, ... N , (5.18) 
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where is defined in equation (4.10). 

Proof. Without loss of generality assume that i* • 1, .1* » 1 and £.* - 2. 

The 1*L vectors ip and ip' differ only with respect to the parameters 

of the prior distribution indexed by 1,1 and k* so that 

,(R; ij,) - ,(R; *'), ,(R; ,(R; *'), 

(5.19) 

(5.20) 

Under the initial assumptions of the proof, the inequalities (5.17) and 

(5.20) imply that R(l) > R(2) for the distribution indexed by 1,1 and 

k*. From equations (3.7) and (4.7) 

N 

q^*(# - qi*(4') - 2 *')) 

j-1 

all i, j and k 1,1 and k* , 

and 

&k*^(R(l); > £^*^(R(1); »') . 

- Pi*i(E^*i(R; i{i) - Ej*J^(R; *')) > 0 ; 

qf*(40 - qï*(i^') < Pi*,( max {E^* (R; v)} - min {af^.(R; *)}) 
A 1 ^»3 

- pj*i |R(1) - R(2)| - q . 
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and 

Let 

- 0, all k f k* , 

q^(# - - 0, all 1 f 1* . (5.21) 

N 

S^Cn. + 6 ̂  p%_j J V 

j-1 R 

Vj(n, n,^)) , 

i - 1, 2, ... N, " R - R(l), R(2), 1/;^ - il>, r, 

(5.22) 

and use the following notation, 

, k, 
V (n, rp) - max {s. (n-1, #} " S (n-1, 4») , 

. k? 
v,(n, i|»') • max {s.(n-1» #')} " s. (n-1, t|>*) , (5.23) 

where v^(n, p) is defined in equation (4.9), The following inequality 

is developed using the above notation. 

1 2 
v^(n, ip) - v^(n, i{i*) • (n-1, # - (n-1, ip*) 

k. k, 
< (n-1, V,) - S^Xn-1, r) . (5.24) 
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The inequality (5.18) will be established inductively. l%lien n • 1 

and assuming - k*, 

S^*(0, 4,) - S^*(0. r) - qi*(tf') - q%^(^') < q . (5.25) 

Next assume k, # k*. 

Ic Ic Ic Ic 
1|)) - S^^(0. ii>) - qil(*) - q^^(W 

- 0 ; (5.26) 

from equations (5.24), (5.25) and (5,26) 

v^d. *) - Vi(l, *') < q^*(,p) - q^*(V;') < q . (5. 

When 1 V 1, 

kl,. .. A, 

27) 

v^(l, ̂ ) - v^(l» Tj;*) < S^"(0, # - S^"(0, ij;') 

k k 
- q^ (W - q^ (4^) " 0 . (5.28) 

Next let n - 2 and assume k^^ = k*, 

sk*(l, 4) _ S%^(1, *') - qi*(*) - qï*(*') 
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+ B 

R 

^)) 

- I  2^*1(R; V'yvjCl, *')) 

N 

+ I 'W I 
j-2 R 

- v j(l, T^*j(R, *'))) (5.29) 

If two vectors and differ only with respect to the parameters 

of the distribution indexed by 1,1 and k* and are such that 

E^*j(R; > E^*j(R; then, in a manner identical to that used in 

equation (5.21), it can be shown that 

0 < qj*(i;;p - qi*(1'2) < 4*i ̂  

From condition (5.17) and equations (5.27) and (5.30), 

^id. T5^*j(R(1). V) > Vi(l, **) > TjCl, T^*i(R(2), **)), 

f ' 
y 4')V^(1, Tj*j(R, m 1 Vj(i, TJ*j(R(I), m . 

R 

2 A^*i(R; *')Vi(l, 1:^*1 (R, *')) > v,(l, TJ*J(R(2), #) . (5.31) 
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N 

Using the Inequalities of (5.28) and (5.31), and since ^ j - 1, 

j-1 

k" 1, 2, ... 1 " 1, 2, , N, equation (5.29) can be written 

Si*(l, W - S^*(l, 4,') - qj[*(W - q^*(ij'') 

+ e Tj*j(R(l), #) - Vj(l. TJ*^(R(2). *'))) 

N 

* 1 "ïj 1 «> 
j-2 R 

- Vj(l, T^*j(R, *'))) 

lqj*(i;') - qi*(^') + 0(qi*(Tj*i(R(l). $)) 

- qi*(Tj*^(R(2). *'))) 

< q + B 
Ci 

(5.32) 

Assuming f k*, and from equations (5.27) and (5.28), 
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1 1 1 1 
S/(1. ̂) - Sj\l, iA') - 41 (*) - qi (*') 

N 

+  ®  1  H J  1  « >  
j-1 R 

- VjCl, T^ijCR, 1)))) 

1 3 (qi*(v) - Jfcv}) 

< S (5.33) 

From equations (5.22), (5.32) and (5.33), 

v^(2, *) - Vi(2, *') < - qi*(f') 

+ 8(qj*(Ti*i(R(l). l^)) - q%*(T^*i(R(2), *'))) 

< q + 0 q , (5.34) 

and when 1 f 1, from equations (5.22) and (5.27), 
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A, v.(2, - v^(2, r) < ilj) - S."(l, 

^ k k k + « I Pi!j I TiljCK. «' 
j»l R 

- Vj(l, T.ljCR, *'))) 

1 g(q^*(v,) -

< 4^*^ q . (5.35) 

l-Jhen V is the vector containing the parameters of the prior distributions, 

denote the vector of parameters of the posterior distributions given n 

observations of reward R(&) fron the distribution indexed by i, .1 and k 

by .(R(&)", ̂ ). An inductive argument using equations (5.27), (5.34) 

and (5.35) establishes that 

Vj(n, ip) - v^(n, i ' ' )  <. qj (W 

+ S(qJ*(T|^*j(R(l), «) 

- qj*('^') 

- qj*(T^*j(K(2). *'))) 
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+ ^)) - t'))) 

+ . . .  +  g" " l (q i * (T i * i (R( l ) * " l ,  Ip ) )  

- qj*(Tj*^(R(2)''"\ *'))) 

< q(i + 0 + + ... + S""l) . (5,36) 

To obtain the upper bound for v^(^) - v^(^') let n ® in equation (5.36). 

00 

Vj(w - vjW) < 2 4!l 4 - - &!*! '!"i? 
h«»0 

PÏ*1 (5.37) 

The lower bound of v^(^) - v^($') can be established by first 

writing the inequality 

^1 ^2 
v^(n, 40 - v^(n, ̂ ') = (n-1, %p) - (n-1, U'*) 

^2 ^2 > S^^(n-1, \p) - (n-1, \p ' )  . (5.38) 

Let n " I and assume first that kg - k*, then that f k*. Since 

q^*(rj;) - q^*(#') > 0, and from equations (5.25), (5.26) and (5,38), 

v^(l, 4>) - v^(l, r) > 0 . (5,39) 
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IJhcn a * 2 and assuriing that alternative k* is not chosen on either 

the first or second transition, then from equations (5.28), (5.33) and 

(5,38) 

v^(2, il>) - vj(2, It»') > 0 . (5.40) 

An inductive argument can be used to show that 

v^(W - v^(4'') > 0 , Q.E.D. (5,41) 

Corollary 5,4. If ,*(&(&*), # " is such that 
» J 

r) . (5.42) 

and if R(l) and R(2) are the possible rewards from the distribution 

indexed by i*, j* and k*, then 

i* - 1, 2, ... N, (5.43) 

where v^(i|/) is defined in equation (4.10). 

Proof. The direct substitution of ip' for i{i and ^ for ip' in the 

proof of Theorem 5,3 is possible. Then 



www.manaraa.com

63 

0 < Vj.cî') - j, 

f 
-P^I.j. I I < "!*(« - 'i»(5') i 0 • Q.E.D. (5.44) 

It Is possible to modify Theorem 5,3 and Corollary 5.4 to obtain a bound 

which is leas than p^^^ ^• Suppose that the conditions of 

Theorem 5.3 are met and assume, without loss of generality that i* • j* - 1 

and R(l) > R(2). Let 

q(n) - q^*(W - qj*(^') 

+ 6(qj*(T^*i(R(l). If,)) - q^*(Tj*^(R(2). $'))) 

+ B^(qj*(Tj*^(R(l)^. 4'» - qj*(T^*j(R(2)^» *'))) 

+ ... + 3''"^(qi*(T^*^(R(l)""\ )̂) 

- qj[*(Tj*j(R(2)"'\ *'))) , 

n • 1, 2, ... (5.45) 

From equations (5.36) and (5.37) 

< ^1*J* q(a) + ^ 'S 

h-n 
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.k* f V . .k: _ 6" 
" l*,j* 1-6 

n " 1, 2, ... (5.46) 

Therefore the quantity ^ ^ can be replaced by 

A^* q(n) + p^* j* |R(1) - R(2) | ̂2^- In Theorem 5.3 and Corollary 5.4. 

The bounds for v. (if/) - v. (T, . (R, #) will be used to obtain an 
1 1 1#J 

], 
upper bound for v ($). Letting T, .(R, \p) - tj/', the results of Theorem 

x 1 »j 

5.3 and Corollary 5.4 can be written 

v^(\f»') - v^(#) + 0^ j(R, i l )  Av^(^'), 

where Av^(ii;') - pj^^ |R(:i)-R^2;) | ̂ E^^j(R; lii) > E^^j(R; *'); 

- -Pi^j •4') < j(R; *'); 

0 < 8^^j(R; W < 1, 

l,j - 1, 2, ... N, k - 1, 2, ... K^, R - R(l), R(2). (5.47) 

Using the notation of (5.47), equation (4.10) can now be written 
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V (liO - max {qj(W 4- g V V (R; l{/) 
' 0<k<K^ ^ f  "'j 

X (Vj($) + e^^jCR, W AVj(T^^j(R, *)))} , 

i - 1, 2, ... N, R < R(l), R(2) . (5.48) 

Let 0 • (w^, w^, ... w^) = (oj) denote a state stationary strategy where 

is the alternative to be chosen when the system is in state i, and 

define w^(fl, 0 as 

N 

V;) = q"(^) + S ^ ^ 

j«l R 

X (Wj(0, ij;) + 6%^j(E, Tf,) AVj(TW j(R, *))) 

N 

• 2 Pi.j 2 *)(R + 8 « 

j-1 R 
N 

X AVj(Ti,j(R, W)) + e ^ Wj(0, •^) , 

j-1 

i . 1, 2, ... N, R = R(l), R(2) . (5.49) 

To express the set of equations of (5.49) in matrix form let 

W(n, ilO = COL ̂ Wj^(fi, \p) , ((f), ... w^(n, li^) J , 
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w w 
1,1 *^1.2 

w 
1,N 

w w 
•2,1 *'2,2 

w 
2,N 

p(î2) -

u w 
^N,l *'N,2 

0) 
^N,N 

D(.Q, # - COL [dj'c^), d^cw, ... d^m] , 

where N 

1 Pi.j S "i.! *)(* + s « 

j-1 R 

X AVj(T^^j(R, #)) . (5.50) 

Express the set of equations (5.49) as 

W(0, If,) - D(a, 4;) + 6 P(0) W(0, It;) , 

W(fl, If,) - S P(0) W(0, ij,) - D(0, T&) 

[l - 8 P(i2)]w(n, tp) - D(0, ip) , 

W(0, 4;) - [i - 6 P(fl)]'^ D(0, If,) (5.51) 
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Howard (12, p. 82) has shown that - & F(Q)J ^ exists and has non-

negative elements. Note that equation (5,49) is of the same functional 

form as equation (5.48), and Aat the set of all state stationary 

strategies, denoted by A(0), is finite. Calculation of W(Q, ill) is 

equivalent to Howard's value determination operation, and the policy 

impro\%ment routine will determine Q* such that 

v. ( ip )  • max (w (0,*)} • w.(fl*, # 
^ neA(a) ^ ^ 

i • 1,2 (5 

Letting R* . (w^, 

r, „ 

0)*, ... wg) • (w*) and the N^Qi matrix 

[l - B P(ft*)] C - 1» j " 1, 2, ... N, then 

N 

1 %,< 

N N 

X (R + 6 ,p)Av^(]^*^(R, m) 

N N 

< 
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X  ( R +  B  m a x  { 6 " * .  ( R ,  4 0 A v ,  ( T " *  ( R ,  * ) ) } )  
J »" " J»" 

y 
0 < .< 1 

i ^i.h i 
j=l h=l R 

X (R + g {max 0; Av^(Tj*^(R, ̂ 0)}) , 

1 = 1, 2, ... N, R- R(l), R(2) . (5.53) 

Let 

fJ ^ 2^ j(R; *)(R + e max{0; Av^(tJ^^(R, *))}) 

R 

= lij (R; 40 + ]>] 2^ j(R; 4') B max{0; Av^(T^^j(R. *))}, 

R 

q^(# 

N 

I 
j=l 

Pi.j (5.54) 

and, for a state stationary strategy 0, let 

Q(n, if;) - COL [^(#, ... q^'(^)] , 

U(0, Ij;) COL (îijij;) , 112(5^, v) t ••• '^,T(^» ^) ̂ • (5.55) 
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Then, for some iîeA(î2), the last line of equation (5,53) can be set equal 

to u^(Q*, i^)) and written in matrix form as 

U(n*, i|/) - [l - 8 P(fl*)]'^ Q(fl*, I» 

U(a*, tj)) - Q(0*, *) + 6 P(n*) U(0*, W , (5.56) 

so that 

N N 

u^(a*. M . 2 "tj CJ'*' + ® w . 
j-1 J-1 

1 - 1, 2, ... N . (5.57) 

Because the 0^ (R, of  equation (5.49) are unknown, the strategy Î2* 
i»j 

which was defined in equation (5.32) is also unknown. There Is, however, 

a strategy C such that u.(0, if») - max {u, (A, #)} > u.(ft*, \p). Let 
^ neA(fl) ^ ~ ^ 

F(4») " a 1*L vector containing the values • (ij/) 
^ »J 

for all 1, j and k, (5.58) 

Since, for fixed k, equation (5.2) is of the same functional form as 

equation (5.57), the following equation can be written. 

u^($* ,  W ^  u^(Ô,  W •  u^(F( i } i ) )  
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N N 

• max <1 'Ï.3 ® I ^.1 
-- 1 j-l .1-1 

i - le 2, ... N, (5.59) 

and the set of solutions {u^(F(t{>))} can be obtained by application of 

Howard's iterative procedure. 

Theorem 5.5. If u^(F(lf/)) is the solution to equation (5.59), where 

F(^) is defined in (5.58) and equation (5.54), and v^(#> is the 

solution to equation (4.10), then 

v^(ij^) < u^(F(*)), i . 1, 2, ... N . (5.60) 

Proof. From equations (5.53) and (5.59), 

"!<« * 2 =1,3 2 "jth 1 * 
j-l h-1 R 

X (R + g max{0; ^))}) 

< '-i(F(lf/)) , 

1, 2, ... N . Q.E.D. (5.61) 

Theorems 5.1 and 5.5 establish the following bounds for v^(;|/), 



www.manaraa.com

71 

u^(E(R; #) ̂  v^(4,) < u^(F(i^)) , 

1 - 1, 2, ... N . (5.62) 

Theorem 5.6, If the state stationary strategy associated with u^(E(R; #) 

is 

fl(E(R; T^)) « (w^, ... (Ujj) , (5.63) 

and if ^ 

u^(E(R; K,)) > q^'(# +2 2 Pi[j % 

j-1 * R 

X Uj(F(T^]j(R, W)) , 

where k* is the set of all k f k - 1, 2, ... , (5.64) 

then N U W, 0) 
v^(lf) - (W + 6 2 Pi,j 2 Ai,j(R; 

J-1 

X Vj(Ti,j(R. ̂ )) • (5.65) 

Proof. Since it was shown in Theorem 5.5 that v^(4)) < u^(F(;i/)), then 

N 

j-1 R 
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< + 6 2 ,;,)Uj(F(T^ j(R, W)) 

j-1 ' R 

i - 1, 2, ... N, k - 1, 2, ... . (5.66) 

Theorem 5.1 shoved that v^(ii;) _> u^(E(R; #)). If condition (5.64) is 

true for all k', then, since k'Uu^ - k, k - 1, 2, ... K^, 

N 

v^dC) > u^(E(R; !{;)) > q^'(if') + S ^ i^,) 

j-1 ' R 

X "j(F(T^|j(R, *))) 

N 

j-1 R 

« j 
ti>i ^ i ^ 

'i(^) - Si (*) + * 2 Pi,j ]>. &i,j(*: *)"j(Ti,j(*' *))' 

j-1 R 

Q.E.D. (5.67) 

If the conditions of Theorem 5.6 are met the decision maker can 

determine the optimal alternative to govern the next transition. If the 

conditions are not met it may be desirable to recalculate Av^(i|<') using 

If 
the modified bounds for v^(V») - v^(T^ j(R, if»)) suggested in equation 

(5.46). This will reduce the value of .(if») which in turn will reduce 
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u^(F(^)); the change be enough so that the modified calculations will 

meet the conditions of Theorem 5.6. If the conditions of Theorem 5.6 can 

not be met, it is necessary to revert to a solution which is a variation 

of solution by successive approximations. 

Theorem 5.7. If v^(n, Ij and v^(n, if), U) are defined as 

N 

v^(n, If/, L) 

X VjCn-l, 40, L)} . 

n • 1,2, ... , 

v^(0, iIj, L) - u^(E(R, W) , 

and N 

v^(n, U) max 
l<k<K 

X Vj(n-1, 40, U))} , 

n - I, 2 » • • • , 

v^(0, i p ,  U) - Uj.(Fm) , 

i - 1, 2, ... N, R - R(l), R(2) , (5.68) 
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and if n Is such Chat 

N 

and 

then 

y^(n, », L) - + S J ^ # 

j-1 R 

X Vj(n-1, T^^j(R, $), L) , 

N 

^.(n, If, L) > q^'(# + g ^ Pi[j 2 0 

j-1 R 

X Vj(n-1, 40, U) , 

where k' is the set of all k f k*, k • 1, 2 ,  ... K^, (5,69) 

N 

'i(*) - qfw+S 2 Pilj ])[ '%*,(*: W,j(T%;,(R: *)) . 

j-1 R 

(5.70) 

Proof. An inductive argument will be used to establish that 

v^(n, U) > v^(ip) v^(n, T|;, L) . (5,71) 

Theorem 5,1 shows that v^Ci^j) ̂  u^(E(R; i p ) ) ,  so  that 
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N 

q^(# +6 ^ ^)UjCE(R; T^ j(R, m> 

J-1 * & 

N 

< ,^(W + B 2 PÏ,J 2 «>' 
j-1 R 

k • 1, 2, ... N 

• 

v^(l, 4», L) < ; 

N 

,J(« + 8 % PÏ.J ^ «Ï.jCR; «VjCl. «. o 

j-1 R 

N 

j-1 R 

k - 1, 2, ... N 

II 

Ï 

v^(2, ;j,, L) < v^Ci^i); 

and by induction 
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qJCW + B 2 Pl.j S T^^jCR; V/), L) 

j-1 ' R 

N 

i q>) + S 2 Pl.j I «>• 

j-1 R 

k • 1, 2, ... N 

• 

v^(n, il/, L) £ v^CiO . (5.72) 

By a similar argument it is easily shown that 

N 

qj(li') +g ^ % &i^j(R; #Vj(n-l, T^^j(R; #, U) 

' j-1 ' R 

N 

> ,> H-6 2 "L 1  «) .  
j-1 R 

k " 1, 2, ... N 

• 

v^(n, il>t U) > v^(iti) . (5.73) 

Suppose that there is a n such that condition (5.69) is met. Since 
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k* Uk* • k, k " 1, 2, «»« K,, 

N 

(40 > v^(n, i{>, L) 2 ^ ^ Pij ̂  

j-1 R 

Vj(n-1, T^j(R. W, U) 

> W + S 

j-1 R 

# 
N 

V^(ii') • (v) + 3 ^ j ^ *^^j(R: ^)Vj(T^^j(R, !/;)). 

j-1 R 

Q.E.D. (5.74) 
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